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ABSTRACT
Paramount to the viability of a parallel architecture is the correct
implementation of its memory consistencymodel (MCM). Although
tools exist for verifying consistency models at several design levels,
a problematic verification gap exists between checking an abstract
microarchitectural specification of a consistency model and verify-
ing that the actual processor RTL implements it correctly.

This paper presents RTLCheck, a methodology and tool for nar-
rowing the microarchitecture/RTL MCM verification gap. Given
a set of microarchitectural axioms about MCM behavior, an RTL
design, and user-provided mappings to assist in connecting the
two, RTLCheck automatically generates the SystemVerilog Asser-
tions (SVA) needed to verify that the implementation satisfies the
microarchitectural specification for a given litmus test program.
When combined with existing automated MCM verification tools,
RTLCheck enables test-based full-stack MCM verification from
high-level languages to RTL. We evaluate RTLCheck on a multicore
version of the RISC-V V-scale processor, and discover a bug in its
memory implementation. Once the bug is fixed, we verify that the
multicore V-scale implementation satisfies sequential consistency
across 56 litmus tests. The JasperGold property verifier finds com-
plete proofs for 89% of our properties, and can find bounded proofs
for the remaining properties.
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1 INTRODUCTION
Memory consistency models (MCMs) specify the values that can
be legally returned by load instructions in a parallel program, and
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hence they form a critical and fundamental part of the specification
of any shared-memory architecture. An ISA-level MCM serves as
both a target for compilers and a specification for hardware to
implement. Weaker ISA-level MCMs allow a variety of reorderings
of memory operations in an effort to improve performance [6, 25],
while implementations of stronger MCMs may use complicated
speculation to retain performance while still enforcing stronger
ordering [9, 15]. Regardless of the choice of ISA-level MCM, a
hardware implementation of a multicore architecture must satisfy
its MCM in all possible cases, or the correct execution of parallel
programs on that architecture cannot be guaranteed.

With concurrent systems becoming both more prevalent and
more complex, MCM-related bugs are more common than ever.
Intel processors have experienced two transactional memory bugs
in recent years [23, 52]. In another case, ambiguity about the ARM
ISA-level MCM specification led to a bug where neither hard-
ware nor software was enforcing certain orderings [4, 5]. With
no cost-effective hardware fix available, ARM had to resort to a
low-performance compiler fix instead. MCM-related issues have
also surfaced in concurrent GPU programs [3, 45]. Finally, the com-
puter security community has recognized that MCM bugs may lend
themselves to security exploits [22].

Verifying an MCM’s correct specification and implementation
is increasingly critical given its fundamental importance. System
verification is a general challenge, with verification costs now dom-
inating total hardware design cost [20]. MCM verification is partic-
ularly challenging since it requires analysis across many possible
interleavings of events. Testing all possible combinations of inputs
to a system is infeasible, and dynamic testing of a design in simula-
tion will by definition be incomplete and not capture all possible
interleavings, even for the tested programs.

True completeness in MCM verification would entail spanning
the stack from high-level languages (HLLs), through compiler map-
pings, the ISA, and ultimately to underlying hardware implementa-
tions. Prior work has enabled tractable automated memory model
verification for provided litmus tests1 from HLLs to axiomatic mi-
croarchitectural specifications [4, 31, 32, 35, 49], but not deeper
down to RTL.

Meanwhile, more generic non-MCM RTL verification is also ma-
turing [41, 47, 48], often based on languages for specifying temporal
assertions such as Property Specification Language (PSL) [26] and
SystemVerilog Assertions (SVA) [27]. There remains, however, a gap
between early-stage microarchitectural MCM verification [31] and
lower-level RTL verification. If axiomatic microarchitectural MCM
verification could be linked to the temporal verification approaches
of RTL, this link would allow full-stack HLL to RTL checking of
a hardware and software system’s memory ordering behavior. It

1Small programs used to test MCM implementations.
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would also encourage the use of early-stage (e.g., microarchitecture-
level)MCMverification techniques by enabling and facilitating their
subsequent testing against RTL designs when available.

To fill the MCM verification gap between microarchitecture and
RTL, this paper proposes RTLCheck, a methodology and tool for
checking that microarchitecture-level axioms are upheld by un-
derlying RTL across a suite of litmus tests. Given an axiomatic
microarchitectural specification, an RTL design, and a mapping
between the axiomatic representation’s abstract primitives and the
corresponding RTL signals and values, RTLCheck automatically
generates SystemVerilog Assertions (on a per-test basis) and in-
serts them into the RTL design. These assertions lower the abstract
microarchitectural axioms into concrete temporal assertions and
assumptions that help establish that the design’s memory order-
ing behavior meets the microarchitectural specification. RTLCheck
then uses JasperGold [12] (a commercial RTL verification tool from
Cadence Design Systems, Inc.) to check these assertions. The re-
sults of this verification say whether the asserted properties have
been proven for a given test, whether they have been proven for
the test up to a bounded number of cycles, or if a counterexam-
ple (execution trace that does not satisfy the property) has been
found. If a counterexample is found, a discrepancy exists between
the microarchitectural specification and RTL, likely due to a bug
in the implementation. RTLCheck’s approach is incomplete in the
sense that it only ensures that the litmus tests verified actually run
correctly, rather than checking all programs. In other words, it is
possible for a bug to still exist in the design even if the design has
been verified across a suite of litmus tests. Nonetheless, automated
litmus test-based approaches like RTLCheck have the benefit of
concentrating verification effort on the scenarios most likely to ex-
hibit bugs, and are viewed as effective and efficient tools commonly
included in MCM verification approaches [4, 24, 31].

This paper demonstrates RTLCheck’s usage on a multicore ver-
sion of the RISC-V V-scale open-source processor design2 [42]. In
doing so, we discover a bug in the V-scale processor’s memory
implementation. After fixing the bug, we use RTLCheck to show
that our multicore V-scale RTL satisfies a set of microarchitectural
axioms that are sufficient to guarantee sequential consistency for 56
litmus tests. Overall, the contributions of our work are as follows:
• We present an automated flow from axiomatic microarchi-
tectural ordering specifications to temporal assertions about
RTL design operation for a variety of litmus tests. The au-
tomated axiomatic-to-temporal translation is complicated
by the inherent differences between the two approaches.
The generated assertions are inserted into RTL to support
MCM verification of the RTL, narrowing the verification gap
between microarchitecture-level MCM checkers and under-
lying RTL.
• Our work demonstrates that using RTLCheck’s automati-
cally generated assertions in RTL verification can be effi-
cient and tractable. In particular, RTLCheck’s assertion and
assumption generation phase takes just seconds. The subse-
quent property verifier discovers complete proofs (i.e. true
for all possible traces of a given litmus test) for 89% of the

2V-scale was deprecated in the time between this work’s submission and publica-
tion [34], but remains an interesting case study.
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Figure 1: The Multi-V-scale processor: a simple multicore
processor with four three-stage in-order pipelines. The ar-
biter allows only one core to access memory at a time.
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(i1) [x]← 1 (i3) r1← [y]
(i2) [y]← 1 (i4) r2← [x]
Under SC: Forbid r1=1, r2=0

Figure 2: Code for litmus test mp

generated SVA properties in 11 hours of runtime, and can
generate bounded proofs (i.e. true for all possible test traces
up to a certain number of cycles) for the remaining prop-
erties. RTLCheck can also be used for iterative verification,
allowing implementers to refine their design and its specifi-
cation with respect to meeting MCM requirements.
• Our method is the first technique for RTL MCM checking
that applies generally to an arbitrary Verilog design. Other
work has formally proven the MCM correctness of specific
RTL designs [51] for all programs. Our work is complemen-
tary: it proves correctness for litmus tests rather than all pro-
grams, but does not impose restrictions on the RTL design
to be verified. Furthermore, it supports arbitrary ISA-level
MCMs, including ones as sophisticated as x86-TSO, ARM,
and IBM Power [6, 25, 28].
• With the link from microarchitecture to RTL covered by
RTLCheck, the Check suite [33] can now support MCM ver-
ification from HLLs (C11, etc.) through compiler mappings,
the OS, ISA, and microarchitecture, all the way down to RTL.

2 MOTIVATING EXAMPLE
2.1 Microarchitectural Verification Background
Figure 1 shows the Multi-V-scale processor, a simple multicore
where each core has a three-stage in-order pipeline. Instructions
in these pipelines first go through the Fetch (IF) stage, then a com-
bined Decode-Execute (DX) stage, and finally a Writeback (WB)
stage where data is returned from memory (for loads) or sent to
memory (by stores). An arbiter enforces that only one core can ac-
cess data memory at any time. The read-only instruction memory
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(a) µhb graph for the SC-forbidden outcome of Figure 2’s mp
litmus test on Figure 1’s processor. The cycle in this graph
shows that this scenario is correctly unobservable at themi-
croarchitecture level.

Axiom "WB_FIFO":
forall microops "a1", "a2",
(OnCore c a1 /\ OnCore c a2 /\

~SameMicroop a1 a2 /\ ProgramOrder a1 a2) =>
EdgeExists((a1,DX)), (a2,DX))) =>
AddEdge((a1,WB)), (a2,WB))).

(b) Axiom expressing that the WB stage should be FIFO.

always @(posedge clk) begin
if (reset | (stall_DX & ~stall_WB)) begin

// Pipeline bubble
PC_WB <= `XPR_LEN'b0;
store_data_WB <= `XPR_LEN'b0;
alu_out_WB <= `XPR_LEN'b0;

end else if (~stall_WB) begin
//Update WB pipeline registers
PC_WB <= PC_DX;
store_data_WB <= rs2_data_bypassed;
alu_out_WB <= alu_out;
csr_rdata_WB <= csr_rdata;
dmem_type_WB <= dmem_type;

end
end
(c) Verilog RTL responsible for updating WB pipeline registers.

Figure 3: Illustration of the verification gap between mi-
croarchitectural axioms and underlying RTL. The axiom in
(b) states that the processor WB stage should be FIFO. Sets
of such axioms can be used to enumerate families of µhb
graphs such as the one in (a). RTLCheck translates axioms
such as (b) to equivalent temporal properties at RTL. These
properties can be verified to ensure that Verilog such as that
in (c) upholds themicroarchitectural axioms for a given test.

(not shown) is concurrently accessed by all cores. This processor is
simple enough that it appears to implement sequential consistency3
(SC) [29]. As a case study in this paper, our goal is to check that its

3In SC, execution results are consistent with there being a total order on all memory
operations where each load returns the value of the last store to the same address in
this total order.

RTL (Verilog) correctly satisfies SC for the litmus tests we examine.
(Section 5 provides further details about the Multi-V-scale design.)

One litmus test to check for SC is the “message-passing” (mp)
litmus test shown in Figure 2. A multiprocessor that implements SC
will forbid the outcome of r1 = 1, r2 = 0 for this code, as there
is no SC order on memory operations that allows this outcome.
Our approach needs to check that a provided RTL design will never
produce executions exhibiting this forbidden outcome.

The Check suite [33] has developed methods for conducting
microarchitectural MCM verification by exhaustively enumerating
and checking microarchitectural happens-before (µhb) graphs that
represent all possible executions for a given litmus test [31, 32, 35,
49]. RTLCheck extends the microarchitectural verification of µhb
graphs to the level of RTL.

Figure 3a shows an example µhb graph for the mp litmus test
running on two cores, each with the three-stage pipeline mentioned
above. Each column of nodes represents a different instruction in
the litmus test. The left two columns correspond to i1 and i2 ex-
ecuting on core 0. The right two columns correspond to i3 and
i4 executing on core 1. Nodes in µhb graphs represent the indi-
vidual microarchitectural events or pipeline stages in a particular
instruction’s execution on that microarchitecture. For example, the
node in the bottom-right of the graph represents instruction i4
at its Writeback stage, while the left-most node in the second row
represents instruction i1 at its Decode-Execute stage.

Edges between µhb nodes represent known happens-before rela-
tionships between those nodes, and are added based on ordering ax-
ioms that the designer specifies a correct microarchitecture should
respect. As each edge represents a happens-before relationship, a
cycle in the graph indicates that the depicted scenario cannot occur.
This is because a cycle would imply that an event must happen
before itself, which is impossible. Thus, the strategy with verifica-
tion based on µhb graphs is to consider and cycle-check all possible
scenarios. If the specification indicates that a particular outcome
should be forbidden, then all µhb graphs for that test outcome on
that microarchitecture must be cyclic.

Many µhb graphs are typically possible for each litmus test and
microarchitecture, since parallel programs generally have many
possible executions. Ordering rules specifying which edges are
added and when are described in terms of axioms such as the one in
Figure 3b. This axiom is written in µspec, a first-order logic-based
modeling language used by the Check suite [33]. This axiom states
that if the DX stage of an instruction a1 happens before the DX
stage of an instruction a2 that is later in program order on the same
core, then the WB stage of a1 must also happen before the WB
stage of a2.

For mp, under SC, an outcome of r1 = 1, r2 = 0 should be
forbidden on the processor from Figure 1. The microarchitectural
analysis to verify this is performed as follows. First, for this proces-
sor’s in-order pipelines, instructions proceed through the DX and
WB stages in the order in which they were fetched. This behavior
is represented by edges in the graph, including those between the
WB stages of i1 and i2, as well as between the WB stages of i3
and i4 (both added by the WB_FIFO axiom in Figure 3b). Other
axioms can specify other ordering relationships that the designer
stipulates for the implementation. For example, in order for i4 to
return a value of 0 for its load of x, it must complete its Writeback
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stage before the store of x in i1 reaches its Writeback stage and
goes to memory, thus overwriting the old value of 0. This ordering
is represented by the red edge from i4’s Writeback node to i1’s
Writeback node in Figure 3a. Likewise, in order for i3’s load of y to
return a value of 1, it must occur after the store of y in i2 reaches
the Writeback stage, shown by another red edge between those
two nodes. The combination of the four thicker red and blue edges
creates a cycle in the graph. Thus, this execution of mp is (correctly)
not observable.

2.2 From Microarchitectural Models to RTL
The microarchitectural verification conducted by tools such as the
Check suite is only valid if each of the individual ordering axioms
is actually upheld by the underlying RTL. Thus, there is a need to
verify that these axioms are respected by the RTL of the design.
If they are not, then any microarchitectural verification assumes
incorrect orderings and is invalid.

The key contribution of RTLCheck lies in verifying (on a per-test
basis) that a given RTL design actually upholds themicroarchitecture-
level ordering axioms as specified. This verification is difficult due
to the semantic mismatches between axiomatic µspec microarchi-
tecture definitions and the temporal assertions used to verify RTL.
Section 3 describes this semantic mismatch in greater detail, and
then Section 4 discusses our approaches for overcoming these chal-
lenges.

A key contribution of this paper is to identify an approach to
writing µspec that is “synthesizable” to SVA, much as previous work
has spent effort to identify subsets of Verilog that are synthesizable
to actual circuits. We expect that in the future, µspec axioms will
become more tailored to restrict themselves more carefully to rules
that are in fact synthesizable to SVA.

Returning to our example, Figure 3c shows the portion of the
processor’s Verilog RTL that updates theWB pipeline registers from
the DX pipeline registers. The Verilog makes it appear as though
instructions do indeed move to WB in the order in which they
entered DX, but in general, it is challenging to tell from inspection
whether this is always the case. For instance, what if an interrupt
occurs between the two instructions? The axioms to be verified can
be notably more complex than the one in Figure 3b. In such cases,
without automated verification like RTLCheck, it is harder, if not
impossible, to tell whether they are always upheld for a given test.

3 THE SEMANTIC GAP BETWEEN µhb
GRAPHS AND TEMPORAL LOGIC

Axiomatic and temporal models can both be used to verify that
systems correctly satisfy MCMs, but they do so in starkly differ-
ent ways. These differences lead to challenges when translating
between the two, which RTLCheck needs to do in its translation of
µspec to SVA. This section highlights the challenges faced when
translating between the axiomatic world of µspec and the temporal
world of SVA. We begin by providing some background on the
differences between axiomatic and temporal approaches.

3.1 Axiomatic/Temporal Differences
Consider an abstract machine atomic_mach which performs in-
structions atomically and in program order. Figure 4 shows the

verification of the mp litmus test from Figure 2 on atomic_mach
using both axiomatic (Figure 4a) and temporal (Figure 4b) mod-
els of the machine. This verification aims to check whether mp’s
forbidden outcome (r1=1,r2=0) is possible on atomic_mach.

Axiomatic verification conceptually generates all possible exe-
cutions and then checks each one for correctness. In the case of mp,
there are four possible executions, each with a different outcome,
as shown in Figure 4a. To check an execution for correctness, each
axiom is applied to the execution as a whole. An axiom has omni-
science of the execution it is being applied to; in other words, it can
see all events in the execution. The axiom for SC on atomic_mach
checks that an execution does not contain cycles in the combination
of the po (program order), rf (reads-from), fr (from-reads), and
co (coherence order) relations. Figure 4a shows such a cycle in the
execution at its bottom-right, violating the axiom. The cycle indi-
cates that this execution is impossible on atomic_mach. Figure 4a
depicts this by a blue strike through the execution.

Since axiomatic approaches examine executions as a whole, they
can also efficiently reason about the outcome of an execution. This
makes it simple to exclude executions on the basis of their outcome.
The remaining three executions in Figure 4a have outcomes distinct
from the forbidden outcome under test (r1=1,r2=0), so they can
be excluded from consideration when checking for the presence
of the forbidden outcome. This exclusion is shown in Figure 4a
by the dashed red strikes through these executions. There are no
remaining executions that satisfy both the axiom for SC and the
outcome under test. This indicates that the forbidden outcome of
mp is correctly unobservable on atomic_mach.

Temporal approaches, meanwhile, conceptually generate and
check executions step-by-step. As Figure 4b shows, temporal ver-
ification generates all possible first steps from a start state (the
black dot). From each valid first step that is generated, the verifier
generates all possible next steps, and so on, generating a “tree” of
executions. For atomic_mach in Figure 4b, a step constitutes per-
forming a single instruction atomically, while at the level of RTL, a
single step is a clock cycle.

Executions correspond to paths from the start state through
the tree. These paths can represent partial executions of the test
(such as execution p in Figure 4b), which perform only some of the
instructions of the test. They can also represent full executions of
the test which perform all test instructions (such as execution f in
Figure 4b).

The temporal properties required for SC on atomic_mach are
listed in Figure 4b, and are noticeably different from the correspond-
ing axiomatic description. Together, the three properties enforce
that instructions perform in program order, and that loads read
the value of the last store to their address. Temporal properties
are specified in terms of steps rather than executions, and are thus
applicable to both partial and full executions. If a step generated
by the execution tree contravenes one of the properties of the
model, that branch of the tree is eliminated as being impossible
on atomic_mach. For instance, performing i2 from the start state
violates property 1 in Figure 4b, as indicated by the corresponding
blue strike-through.

Unlike in the axiomatic case, filtering outcomes is quite diffi-
cult for temporal methods. Temporal assumptions can be used to
constrain the explorations of a temporal verifier to the outcome
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(a) Axiomatic verification of mp on the abstract machine
atomic_mach. All possible executions are generated, and
then each is checked as a whole. Executions with an out-
come not under test are eliminated (dashed red strikes), as
are executions that violate axioms (blue strikes).

Temporal Properties for SC:
1. @step (Perform instr <i> |-> instrs po-before i performed)
2. @step (Perform Ld <addr> |-> Ld returns Mem[addr])
3. @step (Perform St <addr> <val> |-> Mem[addr] = val)

(i4) r2 ← [x] = 1

(i4) r2 ← [x] = 0

(i3) r1 ← [y] = 1

(i3) r1 ← [y] = 0

(i2) [y] ← 1

(i1) [x] ← 1

…
(i2) [y] ← 1

… …Step 1 Step 2 Step 3 Step 4

Partial execution p

Full execution f

(b) Temporal verification of mp on the abstract machine atomic_mach. Ex-
ecutions are generated and checked step-by-step as a “tree”. Steps exhibit-
ing an outcome not under test are eliminated (dashed red strikes), as are
steps that violate properties (blue strikes). |-> denotes temporal implica-
tion.

Figure 4: Illustration of the differences between axiomatic and temporal approaches when used to check for the forbidden
outcome of mp (r1=1,r2=0) on the abstract machine atomic_mach, which performs instructions atomically and in program
order. The forbidden outcome is found to be unobservable in both cases.

under test, but the step-by-step generation of executions makes it
difficult for the verifier to check whether a given step causes the
future violation of an assumption. Consider a temporal assumption
for mp which enforces that the load of x returns 0 as per the out-
come under test. Performing the store to x in i1 as step 1 makes
it impossible for the load of x in i4 to return 0 as required by the
assumption. (Doing so would now violate property 2.) However,
the only way the temporal verifier can (conceptually) deduce this
is to examine all possible paths from i1 to the end of the execution,
and check if any of them contain a step where i4 returns 0. This
check is computationally intensive in the general case. Due to this
cost, many SVA verifiers (including JasperGold, the verifier we use
in this paper) do not check for the future violation of assumptions
in this manner, contrary to actual SVA requirements4. Instead, they
only guarantee that assumptions are not violated up to the present
step.

Returning to atomic_mach, the lack of a check for future vio-
lation of assumptions means that executions cannot be filtered by
test outcome. Instead, branches of the execution tree that violate
assumptions are only removed from consideration after the offend-
ing event actually occurs. For example, in the execution tree of
Figure 4b, the branch where the load of x in i4 returns 1 is only
eliminated when i4 actually occurs at step 4 (as indicated by the
corresponding dashed red strike-through), even though this out-
come is enforced by the prior occurrence of the store of 1 to x at
step 1. Meanwhile, the step where i4 returns 0 in the displayed
branch is impossible as it violates property 2 from Figure 4b. Since
there is no complete execution that satisfies both the properties of
the model and the outcome under test, the temporal verification
deduces that the forbidden outcome of mp is correctly unobservable
on atomic_mach. However, any properties of the model must still
match partial executions like p, despite the fact that p cannot be

4Checking for future violation of SV assumptions requires complicated liveness checks
even for simpler safety properties. See Cerny et al. [14] for further details.

extended to a full execution that satisfies both the model and the
outcome under test.

The rest of this section explains the specific semantic mismatches
between axiomatic µspec and temporal SVA that are relevant to
RTLCheck, and the following section explains how RTLCheck sur-
mounts these challenges.

3.2 µspec Omniscience and Load Values
Figure 5 shows a µspec axiom (and related macros) from the Multi-
V-scale microarchitecture definition. This axiom splits the checking
of load values into two categories: those which read from some
write in the execution, and those which read from the initial value
of the address in memory. The axiom is litmus-test-independent: it
applies equally to any program that runs on the microarchitecture
being modeled. However, for efficiency, the microarchitectural ver-
ification of the Check suite [31] uses omniscience about a proposed
litmus test outcome to prune out all logical branches of the axiom
which do not result in that outcome. Consider the application of
this axiom to the load of x from mp, which returns 0 in the outcome
under test. In µspec, the SameData w i predicate evaluates to true
if instructions w and i have the same data in the litmus test outcome,
while DataFromInitialStateAtPA i returns true if i reads the
initial value of a memory location. For mp, the Check framework
considers the entire execution at once (like the axiomatic verifier
in Figure 4a), and evaluates all data-related predicates (highlighted
in red in Figure 5) according to the outcome specified by the litmus
test. For the load of x, the Check suite evaluates the SameData w
i predicate in the NoInterveningWrite part of the axiom to false
(as there is no write which stores 0 to x in mp). This causes the
NoInterveningWrite /\ BeforeOrAfterEveryWrite portion
of the Read_Values axiom to evaluate to false. Thus, the body
of the Read_Values axiom is reduced to BeforeAllWrites, and
Check knows from the start that it must add an edge indicating that
Ld x @WB

hb−−→ St x @WB (shown as one of the red edges in Figure 3a).
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Axiom "Read_Values":
forall microops "i",
OnCore c i => IsAnyRead i => (

ExpandMacro BeforeAllWrites
\/
(ExpandMacro NoInterveningWrite
/\ ExpandMacro BeforeOrAfterEveryWrite)).

DefineMacro "NoInterveningWrite":
exists microop "w", (
IsAnyWrite w /\ SameAddress w i /\ SameData w i /\
EdgeExists ((w, Writeback), (i, Writeback)) /\
~(exists microop "w'",
IsAnyWrite w' /\ SameAddress i w' /\ ~SameMicroop w w' /\
EdgesExist [((w , Writeback), (w', Writeback), "");

((w', Writeback), (i, Writeback), "")])).

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SameAddress w i /\ ~SameMicroop i w) =>
AddEdge ((i, Writeback), (w, Writeback), "fr", "red")).

DefineMacro "BeforeOrAfterEveryWrite":
forall microop "w", (
(IsAnyWrite w /\ SameAddress w i) =>
(AddEdge ((w, DecodeExecute), (i, DecodeExecute)) \/
AddEdge ((i, DecodeExecute), (w, DecodeExecute)))).

Figure 5: µspec axiom enforcing orderings and value requirements for loads on theMulti-V-scale processor. Predicates relevant
to load values are highlighted in red. The edge referred to in Section 3.3 is highlighted in blue.

The use of omniscience poses the first major difficulty when
translating µspec to SVA. As explained in Section 3.1, SVA verifiers
do not check for future violation of assumptions. A temporal as-
sumption stipulating that the load of x returns 0 for mp would only
take effect from the cycle where the load of x receives its value.
Thus, nothing would stop the temporal verification from creating a
partial execution where the store of x reached its WB stage before
the load of x did so (similar to partial execution p from Figure 4b).
Since temporal properties must match all partial execution traces,
the translation of the Read_Values axiom from Figure 5 must
match this partial execution. If the Check suite’s omniscience-based
axiom simplification is conducted before translation to SVA, the
equivalent SVA property would simply be a translation of Before-
AllWrites, which requires Ld x @WB hb−−→ St x @WB. Such a property
would fail to match the partial execution, which has St x @WB hb−−→
Ld x @WB. This naive property would incorrectly report an RTL bug
despite the design actually respecting microarchitectural orderings!

In short, the limitations of SVA verifiers prevent RTLCheck from
enforcing the specified outcome of a litmus test at RTL. Thus, RTL
verifiers will check (partial) executions corresponding to all possible
outcomes of the litmus test. To overcome this challenge, properties
generated by RTLCheck that involve checking the value of a load
need to account for all outcomes of the litmus test, not just its
specified outcome. Section 4.2 describes how RTLCheck generates
such properties from µspec axioms.

3.3 Concretizing Abstract µhb Edges

An ordering edge src hb−−→dest at the level of a µhb graph is a state-
ment that src happens before dest for the execution in question.
It says nothing about when src and dest occur in relation to other
events in the execution, nor does it specify the duration of the delay
between the occurrences of src and dest. A naive translation of
the axiomatic edge to the temporal semantics of SVA would be to
use the standard SVA mechanism of unbounded ranges (Section 4.3
discusses the mapping of the src and dest nodes themselves):

##[0:$] <src> ##[1:$] <dest>

This SVA sequence (specification of signal values over multiple
clock cycles) allows an initial delay of 0 or more cycles (##[0:$])
before the occurrence of src, since src may not occur at the first

Core[0].DX

Core[0].WB

Core[1].DX

Core[1].WB

clk

Core[1].LData

St x

St x

St y

St y

Ld y

Ld y

Ld x

Ld x

0x1 0x1

Core[0].SData 0x1 0x1

2 3 4 5 6 7

Figure 6: Example execution trace of mp on Multi-V-scale
where Ld y returns 1 and Ld x returns 1. Signals relevant to
the events St x @WB and Ld x @WB are underlined and in red.

cycle in the execution. It also includes an intermediate delay of
1 or more cycles (##[1:$]) between src and dest, as the dura-
tion of the delay between src and dest is not specified by the
microarchitectural model.

Unfortunately, this standard mechanism is insufficient for check-
ing that src does indeed happen before dest for all executions
examined. Consider in isolation the edge in blue from Figure 5
in BeforeAllWrites enforcing that Ld x @WB hb−−→ St x @WB, with
a constraint that the load of x must return 0. At the same time,
consider the execution trace of mp in Figure 6 which reflects the
outcome where St x @WB hb−−→ Ld x @WB and the load returns 1. (The
relevant signal values are underlined and in red in Figure 6.) Since
Figure 6’s execution has the events occurring in the opposite or-
der and the load values are different, Figure 6 should serve as a
counterexample to the property checking the edge from Before-
AllWrites. However, if one simply uses the straightforward map-
ping above (i.e. ##[0:$] <Ld x=0 @WB> ##[1:$] <St x@WB>),
Figure 6 is not a counterexample for the property!

The reason that Figure 6 is not a counterexample is that the un-
bounded ranges can match any clock cycle, including those which
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contain events of interest like the source and destination nodes of
the edge. For this particular example, the initial ##[0:$] can match
the execution up to cycle 5. At cycle 6, since the load of x returns
1, Ld x=0 @WB does not occur, so the execution cannot match that
portion of the sequence. However, nothing stops the initial delay
##[0:$] from being extended another cycle and matching cycles
0-6. Indeed, even the entire execution can match ##[0:$], thus
satisfying the property5. Since Figure 6’s execution never violates
the sequence, it is not a counterexample to the property.

To address this problem of incorrect delay cycle matches, the
conditions on the initial and intermediate delays must be stricter
to stipulate that they are in fact repetitions of clock cycles where
no events of interest occur. Section 4.3 describes the specific SVA
constructs RTLCheck uses to represent µhb edges in this manner.

3.4 Fire-Once vs. Fire-Always Assertions
An SV assertion or assumption has a clock signal which dictates
what it considers a cycle. On every cycle of this clock, any properties
move temporally forward one cycle. For example, if checking the
following assertion with respect to the execution in Fig. 66:
assert property (@(posedge clk) ##2 <St x@WB>);
one would expect the property to return true, as the WB stage of
the store to x indeed occurs two cycles after the beginning of the
execution. (Figure 6 elides the execution’s first cycle for brevity.)
However, SVA semantics are not that simple. In addition to dictating
when the assertion should move forward one cycle, each cycle of
clk also instantiates a unique copy of the assertion which checks
the entire property from beginning to end, but starting from the
current clock cycle. In other words, one match attempt of the prop-
erty begins at cycle 1 and checks for St x @WB at cycle 3. Another
match attempt begins at cycle 2 and checks for St x @WB at cycle 4,
and so on for every cycle in the execution. If any of these match
attempts fail, the entire property is considered to have failed. Here,
the match attempt that begins at cycle 2 will fail, as St x will not
be in WB at cycle 4 as the property requires.

The conceptual mismatch here is that the SVA notion of an
assertion (taken as a whole) is something that holds true starting
from every cycle in an execution, whereas a microarchitecture-level
happens-before axiom is merely enforced once with respect to an
execution as a whole. To bridge this gap, the properties generated
by RTLCheck must explicitly filter out match attempts that do not
start at the beginning of the execution. Section 4.4 describes our
mechanism for doing so.

4 TRANSLATING µSPEC AXIOMS TO SVA
Figure 7 shows the high-level flow of RTLCheck. Three of the
primary inputs to RTLCheck are the RTL design to be verified, a
µspec model of the microarchitecture, and a suite of litmus tests
to verify the design against. The other inputs to RTLCheck are the
program and node mapping functions (described in Sections 4.1 and
4.3 respectively). Program and node mapping functions translate
litmus tests and µhb nodes to initial/final state assumptions and
equivalent RTL expressions respectively. RTLCheck has two main
5At an intuitive level, some readers may find this logic similar to regular expression
matching.
6##<i> specifies a delay of i cycles
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Figure 7: Overall flow diagram of RTLCheck.

components. The Assumption Generator (Section 4.1) generates
SV assumptions constraining the executions examined by a verifier
to those of the litmus test being verified. The Assertion Genera-
tor (Section 4.2) generates SV assertions that check the individual
axioms specified in the µspec model for the specific litmus test
while surmounting the axiomatic/temporal mismatches discussed
in the previous section. While this section focuses on µspec mi-
croarchitectural axioms and temporal SV assertions at RTL, the
flow would be similar for other microarchitectural axiom formats
and other temporal property languages.

4.1 Assumption Generation
RTLCheck’s generated properties are litmus test-specific, so the
executions examined by an RTL verifier for these properties need to
be restricted to the executions of the litmus test in question. As seen
in Figure 7, the Assumption Generator performs this task using a
program mapping function provided by the user. Program mapping
functions link a litmus test’s instructions, initial conditions, and
final values of loads and memory to RTL expressions representing
these constraints on the implementation to be verified. The param-
eters provided to a program mapping function are the litmus test
instructions, context information such as the base instruction ID
for each core, and the initial and final conditions of the litmus test.

The assumptions generated for a given litmus test must accom-
plish three tasks:

(1) Initialize data and instruction memories to the litmus test’s
initial values and instructions respectively.

(2) Initialize registers used by test instructions to appropriate
address and data values.

(3) Enforce that the values of loads and the final state of memory
respect test requirements in generated RTL executions.

Figure 8 shows a subset of the assumptions that must be gener-
ated for the mp litmus test from Figure 2 for Multi-V-scale.
Memory Initialization: The first assumption in Figure 8 is an
example of data memory initialization. It sets x to its initial value
of 0 as required by mp. The assumption uses SVA implication (|->)
triggered on the first signal being 1. An SVA implication a |->
b first checks a. If a evaluates to true, the implication then checks
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assume property (@(posedge clk) first |-> mem[21] == {32'd0});
assume property (@(posedge clk) first |-> mem[1] == {7'b0,5'd2,5'd1,3'd2,5'b0,`RV32_STORE});
assume property (@(posedge clk) (((core[1].PC_WB == 32'd24 && ~(core[1].stall_WB)) |->

(core[1].PC_WB == 32'd24 && ~(core[1].stall_WB) && core[1].load_data_WB == 32'd1)) and
((core[1].PC_WB == 32'd28 && ~(core[1].stall_WB)) |->

(core[1].PC_WB == 32'd28 && ~(core[1].stall_WB) && core[1].load_data_WB == 32'd0))));
assume property (@(posedge clk) (((core[0].halted == 1'b1 && ~(core[0].stall_WB)) &&

(core[1].halted == 1'b1 && ~(core[1].stall_WB)) && (core[2].halted == 1'b1 && ~(core[2].stall_WB)) &&
(core[3].halted == 1'b1 && ~(core[3].stall_WB))) |-> (1)));

Figure 8: A subset of the SV assumptions RTLCheck generates for mp. Some signal structure is omitted for brevity.

or enforces b beginning that same cycle. The first signal is auto-
generated by the Assumption Generator, and is set up so that it
is 1 in the first cycle after reset and 0 on every subsequent cycle.
Thus, the assumption only enforces that the value of the address
in memory is equivalent to the initial condition of the litmus test
at the beginning of the execution. This distinction is necessary as
the verification needs to allow the address to change value as an
execution progresses. (The first signal is also used to filter match
attempts as Section 4.4 describes.) The second assumption is an
instruction initialization assumption. It enforces that core 0’s first
instruction is the store that is (i1) in Figure 2’s mp code.
Register Initialization: The assembly encoding of litmus test in-
structions uses registers for addresses and data. Register initializa-
tion assumptions set these registers to the correct addresses and
data values at the start of execution. They are similar in structure
to memory initialization assumptions.
Value Assumptions: Load value assumptions cannot be used to
enforce an execution outcome (see Section 3.1), but they can still
be used to guide the verifier and reduce the number of executions
it needs to consider. The third assumption in Figure 8 contains two
such implications. Each one checks for the occurrence of one of
the loads in mp and enforces that it returns the value in the test
outcome (0 and 1 for x and y respectively) when it occurs. The last
assumption in Figure 8 is a final value assumption. It contains an
implication whose antecedent is the condition that all cores have
halted their Fetch stages and all test instructions have completed
their execution. The consequent of the implication stipulates any
final values of memory locations that are required by the litmus test.
Since mp does not enforce any such requirements, the consequent
of the implication is merely a 1.

A pleasantly surprising side effect of assumption generation is
that for certain tests, assumptions alone turn out to be sufficient
in practice to verify the RTL. For most assumptions, JasperGold
(the commercial RTL verifier used by RTLCheck) can find covering
traces, which are traces where the assumption condition occurs and
can be enforced. For instance, a covering trace for an assumption
enforcing that the load of y returns 1 would be a partial execution
where the load of y returns 1 in the last cycle. A covering trace for a
final value assumption in particular would by definition contain the
execution of all instructions in the test. The covering trace must also
obey any constraints on instruction execution stipulated by other
assumptions, including load value assumptions. As such, a covering
trace for mp’s final value assumption is an execution where the load
of y returns 1 and the load of x returns 0. A search for such a trace

is equivalent to finding an execution where the entire forbidden
outcome of mp occurs. If JasperGold can prove that a covering trace
for an assumption does not exist, it will label the assumption as
unreachable. An unreachable final value assumption means that
there are no executions satisfying the test outcome. This result
verifies the RTL for that litmus test without checking the generated
assertions. Thus, a final value assumption forces JasperGold to
try and find a covering trace of the litmus test outcome, possibly
leading to quicker verification. As such, final value assumptions
are beneficial even when the test does not specify final values of
memory, but we expect this benefit to be largest in relatively small
designs. Section 7.2 quantifies our results.

4.2 Outcome-Aware Assertion Generation
As Figure 7 shows, the Assertion Generator is responsible for trans-
lating µspec axioms to SV assertions checking the corresponding
properties at RTL. The Assertion Generator translates µspec primi-
tives like /\ and \/ to their SVA counterparts and and or. It reuses
most of the Check suite’s µspec parsing engine and axiom simplifi-
cation, but its translation must account for the axiomatic-temporal
mismatch as outlined in Section 3.

Section 3.2 shows that the assertions generated by RTLCheck
must account for all possible outcomes of the litmus test, not just
its specified outcome. For example, the assertion generated for the
axiom in Figure 5 for mp’s load of x must account for both the case
where the load of x returns 1 and the case where it returns 0. (The
load of x cannot return any other values in an execution of mp.)

If the load of x returns the initial value of 0, this corresponds
to the BeforeAllWrites portion of the axiom. The SVA property
for this case must check that Ld x @WB hb−−→ St x @WB and that the
load returns 0. Similarly, if the load returns 1, this corresponds
to the part of the axiom comprising NoInterveningWrite and
BeforeOrAfterEveryWrite. The equivalent SVA property here
must check that St x @WB hb−−→ Ld x @WB and that the load returns 1.

To accomplish this outcome-aware translation, the mapping onto
RTL of any µhb edge containing nodes of load instructions must
account for any constraints the edge’s axiom enforces on the values
of those loads. (These constraints are henceforth referred to as load
value constraints.) For mp’s load of x, the µhb edge in Figure 5’s
BeforeAllWritesmacro requires DataFromInitialStateAtPA
i to be true, which in turn requires that the load returns the initial
value 0. This requirement on the load’s value is stipulated as a load
value constraint when mapping the edge from BeforeAllWrites.
Similarly, the µhb edges in Figure 5’s NoInterveningWrite and
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fun mapNode(node, context, load_constr) :=
let pc := getPC(node.instr, context) in
let core := node.core in
match node.stage with
| IF => return "core[" + core + "].PC_IF == "

+ pc + " && ~stall_IF"
| DX => return "core[" + core + "].PC_DX == "

+ pc + " && ~stall_DX"
| WB => let lc := get_lc(node, load_constr) in

let str := "core[" + core + "].PC_WB == "
+ pc + " && ~stall_WB" in

if lc != None then
str += (" && load_data_WB == " + lc.value)

return str

Figure 9: Multi-V-scale node mapping function pseudocode.

BeforeOrAfterEveryWrite macros require SameData w i to be
true. In the case of mp’s load of x, this predicate enforces that the
load returns 1, and this requirement is also encoded as a load value
constraint when mapping the edge. The mapped edges of the two
cases are combined with an SVA or (translated from the µspec \/),
allowing the property to cater to both the executions where the load
of x returns 0 and the executions where it returns 1, as required by
RTL verifiers.

In µspec, the DataFromFinalStateAtPA i predicate returns
true if i stores a value equivalent to the final value of its address
in the litmus test. Accounting for this predicate at RTL requires
ensuring that a given write is the last write to a particular address
in an execution. However, the inability of SVA verifiers to check for
future violation of assumptions also makes it impossible to ensure
that a particular write happens last in an RTL execution. Thus,
when translating this predicate, assertion generation always (con-
servatively) evaluates this predicate to false. Doing so ensures that
the generated properties check all possible orderings of writes (i.e.,
a superset of the executions that the Check suite would examine),
including the write ordering the litmus test focuses on.

4.3 Mapping µhb Edges to SVA
When mapping an edge between two µhb nodes to SVA, RTLCheck
requires some notion of what the nodes represent at RTL. This
functionality is provided by the node mapping function written
by the user and provided to RTLCheck as input. Figure 9 shows
pseudocode for a node mapping function for Figure 1’s Multi-V-
scale processor. The input parameters for a node mapping function
are (i) the node to be mapped, which is a specific microarchitectural
event for a specific instruction, (ii) context information, such as the
starting program counter (PC) for each core, and (iii) any load value
constraints that must be obeyed by the mapping of that node (as
described in Section 4.2). The output of the node mapping function
is a Verilog expression that corresponds to the occurrence of the
node to be mapped in RTL.

As shown in Section 3.3, mapping µspec edges using standard
SVA unbounded ranges misses bugs. Instead, the conditions on
the initial and intermediate delays in an edge mapping must be
stricter to stipulate that they are in fact repetitions of clock cycles
where no events of interest occur. In this context, an event is of

interest if it matches the node in question (i.e., if it matches the
microarchitectural instruction and event), but regardless of the data
values themselves. As such, for initial delays and intermediate cycles,
we use this sequence7:
(~(mapNode(src, None) || mapNode(dest, None))) [*0:$]

No load constraints are passed to the calls to the mapping func-
tion to generate the delay sequence. This prevents delay cycles
from matching cases where events of interest occur with incorrect
values, as in the case of the load of x from Section 3.3. The overall
mapping RTLCheck uses for happens-before edges is:
(~(mapNode(src, None) || mapNode(dest, None))) [*0:$]
##1 mapNode(src, lc) ##1
(~(mapNode(src, None) || mapNode(dest, None))) [*0:$]
##1 mapNode(dest, lc)

This edge mapping is capable of handling variable delays while
still correctly checking the edge’s ordering.

Finally, some properties require simply checking for the existence
of a µhb node, rather than an edge between two nodes. In these
cases, we use a similar but simpler strategy to that used for map-
ping edges. The existence of a node is equivalent to an execution
consisting of zero or more cycles where the node does not occur
followed by a cycle where it does occur; in other words:
(~map(node, None)) [*0:$] ##1 map(node, lc)

4.4 Filtering Match Attempts
Section 3.4 showed how naive assertions generate multiple match
attempts in contradiction to microarchitectural intent. Only the
first match attempt is capable of matching all events from a microar-
chitectural axiom, so it is the only one that should be checked to
match microarchitectural intent. To filter out match attempts other
than the first attempt, RTLCheck guards each of its assertions with
implications triggered by the first signal, which is auto-generated
by the Assumption Generator (Section 4.1). The original assertion
in Section 3.4 would attempt a match every cycle:
assert property (@(posedge clk) ##2 <St x@WB>);

Instead, we guard the assertion with an implication on first:
assert property (@(posedge clk) first |->

##2 <St x@WB>);
Now, any match attempt that begins at a cycle after the first one

will trivially evaluate to true, as the first signal will be 0 and the
implication consequent will never be evaluated. Meanwhile, the
match attempt beginning at the first cycle will trigger the implica-
tion and cause evaluation of the consequent property as required.

Putting it all together, Figure 10 shows an example assertion
for mp which checks for the existence of an edge Ld x=0 @WB hb−−→
St x @WB on Multi-V-scale. Note that the load’s WB stage checks
that the data value returned is 0, as required by the load value
constraint. In general, assertions check multiple edges, and are
larger than the one in Figure 10.

5 MULTI-V-SCALE: A SIMPLE MULTICORE
This section describes the relevant details of the Multi-V-scale pro-
cessor, a multicore version of the RISC-V V-scale processor [42]. The
7<x> [*0:$] represents possibly infinite repetitions of x
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assert property (@(posedge clk) first |-> (((((~((core[1].PC_WB == 32'd28 && ~(core[1].stall_WB)) ||
(core[0].PC_WB == 32'd4 && ~(core[0].stall_WB)))) [*0:$] ##1
(core[1].PC_WB == 32'd28 && ~(core[1].stall_WB) && core[1].load_data_WB == 32'd0) ##1

(~((core[1].PC_WB == 32'd28 && ~(core[1].stall_WB)) || (core[0].PC_WB == 32'd4 && ~(core[0].stall_WB)))) [*0:$]
##1 (core[0].PC_WB == 32'd4 && ~(core[0].stall_WB)))))));

Figure 10: SV assertion checking Ld x@WB
hb−−→ St x@WB in Multi-V-scale for mp where Ld x returns 0. Some signal structure

is omitted for brevity.
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Figure 11: An example timing diagram for Multi-V-scale
showing how a store on core 0 and a load on core 1 access
memory through the arbiter in a pipelined manner.

V-scale processor itself is a Verilog implementation of the RISC-V
Z-scale processor [30], which is written in Chisel.

5.1 V-scale Microarchitecture
The V-scale pipeline is suited for microcontrollers and embedded
systems. It is similar in spirit to the ARM Cortex-M0/M3/M4 archi-
tectures [30]. The V-scale pipeline is three stages long, as shown
in Figure 1. The three stages are Fetch (IF), a combined Decode-
Execute stage (DX), and the Writeback stage (WB).

The source code of V-scale does not implement a cache, but
does have an implementation of a memory array. When accessing
memory, both loads and stores send their addresses to memory in
the DX stage. In theWB stage, a load receives its data frommemory,
and a store provides its data to memory, to be clocked in on the
next rising edge.

The V-scale memory is pipelined, and is able to start a memory
transaction every cycle. Thus, it can start a memory transaction for
an instruction a which is in DX while providing data to or reading
data from an instruction bwhich is inWB. Figure 11 shows a timing
diagram of how V-scale loads and stores operate. The memory does
not always operate as expected; RTLCheck discovered a bug in its
implementation in the course of our analysis. (See Section 7.1.)

5.2 Multi-V-scale
We created a multicore version of the V-scale processor by instanti-
ating four V-scale pipelines and connecting them to data memory
through a simple arbiter that we developed (Figure 1). The arbiter

is connected to all four cores, and allows only one of them to access
data memory every cycle. If cores other than the one currently
granted access wish to access memory, they must stall in the DX
stage until the arbiter grants them access.

The arbiter is capable of switching from any core to any other
core in any cycle. The switching pattern of the arbiter is dictated by
a top-level input to the design. This input stipulates which core the
arbiter should grant memory access to in the next cycle. JasperGold
tries all possibilities for this input, resulting in all possible switching
scenarios between cores being examined when verifying properties
generated by RTLCheck. The arbiter accounts for the pipelined
nature of the V-scale memory; in other words, it can allow one core
to start a request to memory in its DX stage while another core
is receiving data from or sending data to memory in its WB stage.
Figure 11 shows an example of this pipelining.

In addition to making V-scale multicore, we also added halt logic
and a halt instruction to the V-scale implementation. This halt
logic lets a thread be stopped once it has executed its instructions
for a litmus test. (The RISC-V ISA does not currently have a halt
instruction that we could have used.)

5.3 Modeling Multi-V-scale in µspec
We modeled our Multi-V-scale processor in µspec by having one
node per instruction per pipeline stage (i.e. one each for IF, DX, and
WB respectively). We included Figure 5’s axiom, which states that
loads must read from the last store to their address to complete its
WB stage, or from the initial state of memory. This axiom should
hold since stores write to and loads read from the same memory. We
also included an axiom enforcing a total order on the DX stages of all
memory instructions. This axiom is enforced by the arbiter allowing
only one core to access memory at a time while the others stall in
DX. We also included properties such as the one in Figure 3b stating
that the pipeline stages were in-order. Another axiom we added
required a total order on all writes to the same address (enforced
through the arbiter’s total order on memory operations). Figure 3a
depicts an example µhb graph showcasing the edges added by some
of these axioms.

6 METHODOLOGY
RTLCheck’s Assertion Generator and Assumption Generator are
written in the Coq proof assistant [17], which allows for formal
analysis of the code. As with prior tools in the Check suite, we use
Coq’s capability to be extracted to OCaml to generate an OCaml
version of RTLCheck that can be compiled and run as a standalone
binary.
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RTLCheck’s generated assertions and assumptions are output as
a single file per litmus test, taking only a few seconds per test. A
shell script uses these files to create litmus-test-specific top-level
modules of Multi-V-scale which are comprised of the implementa-
tion of the top-level module concatenated with all the assertions
and assumptions for that specific litmus test. We based our changes
to V-scale to make it multicore off commit 350c262 in the V-scale
git repository [34].

6.1 RTL Verification Methodology
RTLCheck uses JasperGold [12] to verify the SV assertions subject
to the SV assumptions for a given litmus test. For the temporal
verification supported by SVA, the design itself and any SVA prop-
erty to be proven on the design are compiled by JasperGold into
finite automata, with state transitions at clock cycle boundaries. A
property is valid with respect to the design if all execution traces
that can be generated by the design satisfy the property [14]. For
each property, JasperGold may: (i) prove it for all possible cases, (ii)
find a counterexample, or (iii) prove it for all traces shorter than a
specified number of cycles (bounded proof).

JasperGold has a variety of different proof engines which are
tailored to different purposes. These engines employ SAT (satisfi-
abililty) and BDD (binary decision diagram)-based approaches to
prove the correctness of properties [13]. Section 7 discusses our
findings regarding the suitability of various engines for RTLCheck.

When verifying properties, JasperGold takes in a Tcl script as
its configuration, which includes the choice of engines to use, how
long to allot for the overall verification, and how often to switch
between properties when verifying.We use a shell script to generate
a Tcl script from a template for each litmus test. The Tcl scripts
include a reference to the top-level module for their specific litmus
test in the files provided to JasperGold for verification. The test-
specific scripts and top-level modules allow instances of JasperGold
to be run in parallel for different tests on the same Verilog design
without duplication of most of the Verilog RTL. We ran instances of
JasperGold on the Multi-V-scale design across litmus tests on a 240-
node Intel cluster, allotting 4 or 5 cores and 64-120 GB of memory
per litmus test, depending on the configuration used. We use a
suite of 56 litmus tests, comprised of a combination of hand-written
tests from the x86-TSO suite [39] and tests automatically generated
using the diy framework [18]. Section 7 gives verification results.

7 RESULTS
This section presents the results of our evaluation of the Multi-V-
scale processor RTL. We first discuss a bug we found, and then
present RTLCheck runtimes under different JasperGold configura-
tions to compare engines.

7.1 Bug Discovered in the V-scale Processor
In our evaluation of Multi-V-scale, JasperGold reported a counterex-
ample for a property verifying the Read_Values axiom (Figure 5)
for the mp litmus test. This property checks that each read returns
the value of the last store to that address that completed WB (pro-
vided the read did not occur prior to all writes). Investigating the
counterexample trace, we discovered a bug in the memory imple-
mentation of the V-scale processor. Namely, if two stores are sent to

Core[0].DX

Core[0].WB

Core[1].DX

Core[1].WB

clk

Core[1].LData

St x

St x

St y

St y

Ld y

Ld y

Ld x

Ld x

0x1 0x0

Core[0].SData 0x1 0x1

2 3 4 5 6 7

Mem.wdata 0x1 0x1

Mem[x] 0x0

0x0

Mem[y] 0x0

Mem.bypass

1

2

3

Figure 12: An execution of mp showcasing the bugRTLCheck
found in the memory implementation of V-scale. The store
to x is dropped by the memory, resulting in the subsequent
load of x returning an incorrect value of 0.

memory in successive cycles, the first of the two stores is dropped
by the memory. The V-scale memory presents a ready signal to the
pipeline (or in the multicore case, to the arbiter), and the implemen-
tation currently hard-codes this signal to be high. This hard-coded
value implies that the memory is ready to accept a new value to be
stored every cycle, and so the dropping of values is a bug. This bug
would occur even in a single-core V-scale.

Internally, the memory clocks data from stores into a register
wdata, and only writes the contents of wdata to the address of the
store in memory when another store initiates a transaction. If a load
requests data from the address whose latest store is in wdata, the
data is bypassed to the load by the memory. Thus, wdata functions
in a manner akin to a single-entry store buffer.

Figure 12 shows a counterexample trace which violates the
RTLCheck-generated property. Here, the two stores of mp (to x
and y) initiate memory transactions in cycles 2 and 3 respectively.
The wdata register is consequently updated to 1 in cycles 4 and 5,
one cycle after the stores provide their data values. However, when
the second store initiates its transaction at cycle 3, the memory
implementation incorrectly pushes the value of wdata from cycle
3 into memory at address x (arrow 1 in Figure 12) to make room
in wdata for the store of y. At cycle 3, wdata has not yet been
updated with the data of the store to x, so x gets incorrectly set to
0 in memory. The data of the store to y is then clocked into wdata
at the start of cycle 5, overwriting the data of the store to x and
causing it to be lost. When the load of y occurs, it gets its value
bypassed from wdata (arrow 2 in Figure 12). This is because no
subsequent store has occurred to push the contents of wdata to
memory. Meanwhile, the load of x returns the value of memory at
address x (arrow 3 in Figure 12), which is incorrectly 0, violating
the property.

We corrected the dropping of stores by eliminating the interme-
diate wdata register. Instead, we clock a store’s data directly into
memory one cycle after the store does its WB stage. Load data is
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Config
Covering
Trace
Run

Proof Engine
Runs

Memory/
Test

Cores/
Test

Hybrid 1 hour Autoprover (1 hr)
K I N AM AD (9 hrs) 64 GB 5

Full_Proof 1 hour I N AM AD (10 hrs) 120 GB 4
Table 1: JasperGold configurations used when verifying
Multi-V-scale with RTLCheck.

combinationally returned in WB as the value of memory at the ad-
dress the load is accessing. This organization allows data written by
a store in one cycle to be read by a load in the next cycle. Once we
fixed the bug, RTLCheck was able to completely prove or provide a
bounded proof for all assertions. This bug was also independently
reported [16], but that report does not correctly diagnose the bug as
only occurring upon successive stores. RTLCheck’s counterexample
trace offered detailed analysis to pinpoint the bug’s root cause.

This example highlights an interesting and important use case for
RTLCheck: it is most directly intended to catch memory ordering
bugs, but is also able to catch bugs that fall on the boundary between
memory consistency bugs andmore basicmodule correctness issues.
This is because formal verification of RTL takes into account all
signals that may affect the property being checked, whether they
are explicitly modeled at the microarchitectural level or not. Thus,
any behavior that causes the property to be invalidated for a litmus
test will be flagged as a counterexample by a property verifier
checking assertions generated by RTLCheck.

7.2 RTLCheck Runtimes
We ran the properties generated by RTLCheck for the 56 litmus
tests in our suite under the JasperGold commercial RTL verifier.
JasperGold has many configuration options and solver settings.
Space constraints preclude an exhaustive discussion, but we present
results for two options.

Table 1 provides the details of the configurations. Each configu-
ration spends one hour trying to verify tests by finding covering
traces for assumptions (see Section 4.1), and then runs proof en-
gines on the assertions for the remaining 10 hours. The Hybrid
configuration uses a combination of bounded engines (which aim
to prove correctness up to a bounded number of cycles) and en-
gines which aim to find full proofs, and also utilizes JasperGold’s
autoprover. Our second configuration (Full_Proof) uses exclusively
full proof engines, which can theoretically improve the percentage
of proven properties at the cost of increased runtime. We allocate
one core per engine used for each verification job.

Figure 13 presents the runtime to verification of JasperGold for
the 56 litmus tests in our suite. For the 22 tests where assumptions
were proven to be unreachable through covering traces, the runtime
to verification is simply the time taken to check the assumptions.
This time can be quite small, as seen for tests like lb, mp, n4, n5, and
safe006, which are verified in under 4 minutes by either configura-
tion. For tests where assumptions were not found to be unreachable,
the total runtime is either the time taken to prove all properties,
or the maximum runtime of 11 hours per test (if some properties
remained unproven). The average runtime is 6.2 hours per test for
both the Hybrid and Full_Proof configurations. The total CPU time
for the Hybrid run (which used 5 threads per test) is 1733 hours,

and that of the Full_Proof run (which used 4 threads per test) is
1390 hours.

Figure 14 shows the percentage of all assertions generated by
RTLCheck that JasperGold was able to find complete proofs for
within the time limits provided for the 56 litmus tests. In most
cases, the Full_Proof configuration can find complete proofs for an
equivalent or higher number of properties than the Hybrid configu-
ration can. However, there are tests where the Hybrid configuration
does better, such as n2, n6, and rfi013. On average, the Hybrid
configuration was able to completely prove 81% of the properties
per test, while the Full_Proof configuration found complete proofs
for 90% of the properties per test. Overall, the Hybrid configuration
found complete proofs for 81% of all properties, while the Full_Proof
configuration found complete proofs for 89% of them. Given the
negligible difference in average runtime between both configura-
tions, using exclusively full proof engines has clear benefits as it
can find complete proofs for a larger fraction of the properties.

For properties that were not completely proven, JasperGold pro-
vides bounded proofs instead. The average bounds for such proper-
ties for the Hybrid and Full_Proof configurations were 43 and 22
cycles respectively. As litmus tests are relatively short programs,
many executions of interest fall within these bounds, giving the
user considerable confidence that the implementation is correct.

8 RELATEDWORK
Our work is distinct from general RTL verification research in that
we focus on MCMs. This allows us to identify strategies that are
efficient and tailored enough to give reasonable runtimes, while also
being general enough to handle relaxed memory models [6, 25, 46]
often not handled by other approaches.

MCM Specification and Verification: A large amount of re-
cent work has considered MCM specification and verification at
various layers of the hardware-software stack. This includes spec-
ification of the x86-TSO, ARM, and Power memory models at
the ISA level [4, 19, 21, 39, 44], as well as specifications of pro-
gramming language memory models like those of Java [37] and
C11 [7, 8, 10]. Specifications of memory models have also been
automatically generated from example tests and partial specifica-
tions [11]. Compiler mappings from C11 to various ISAs have been
formally proven [7, 8, 43], though the proofs have been shown to
be flawed at times [36].

The Check suite of tools provides static automated verification
of MCM implementations. The suite covers microarchitecture [31],
coherence protocol features [35], virtual memory and the OS [32],
and HLL memory models [49]. Other tools, such as DVMC [38] and
TSOTool [24], perform dynamic MCM verification.

FormalVerification ofRTL:Aagaard et al. [1] propose a frame-
work for microprocessor correctness statements that compares
specification and implementation state machines. They also pro-
pose a formal verification methodology [2] for datapath-dominated
hardware using a combination of lightweight theorem proving and
model checking, integrated within the FL functional language.

There has been work in the CAD/CAV communities on assertion-
based verification (ABV) [50, 53]. However, there is no prior work
(to our knowledge) on using such assertions for MCM verifica-
tion. In addition, such work focuses on handwritten assertions,
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Figure 13: JasperGold runtime for test verification across all 56 tests and both engine configurations.
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Figure 14: Percentage of fully proven properties (in a max. of 11 hours) across all 56 tests and both engine configurations.

in contrast to RTLCheck’s automatic assertion and assumption
generation. In that regard, RTLCheck is closer to the ISA-Formal
verification methodology created by Reid et al. [41] to verify ARM
microprocessors. They use a processor-specific abstraction function
(similar to our node mapping function) which extracts architectural
state from microarchitectural state, and check correctness by com-
paring the difference in the architectural state before and after an
instruction executes/commits with what a machine-readable speci-
fication says the instruction should do to architectural state. They
do not verify the entire design. For instance, the memory subsystem
and floating-point units are not verified, and they do not address
memory consistency issues.

Pellauer et al. [40] provide a method for synthesizing SVA into
finite state machine hardware modules, which can then check for
the desired behavior as the processor runs. Stewart et al. [47] pro-
posed DOGReL, a language for specifying directed observer graphs
(DOGs). These DOGs describe finite state machines of memory
system transaction behavior. Users also define an abstractor per
interface (similar to our node mapping function) that interprets
signal-level activity as transaction-level events, whose properties
can then be verified. DOGReL compiles down to RTL and SVA,
similar to RTLCheck. However, RTLCheck specifically focuses on
MCM properties in multiprocessors, which are not discussed in
the DOGReL paper. In addition, RTLCheck’s µhb graphs represent
executions while DOGs represent finite state machines.

Vijayaraghavan et al. [51] formalise the idea of components in
a hardware design such as reorder buffers (ROB), register files,
store buffers, and caches as labelled transition systems (LTSes).
They provide a machine-checked proof in Coq that if the indi-
vidual components obey certain rules, then the combined system
implements sequential consistency for all programs. LTS seman-
tics match those of Bluespec, providing a method to generate RTL
from such a formally-proven component behavior specification.
While RTLCheck proves correctness for litmus tests rather than
all programs, its methodology is capable of handling arbitrary RTL

designs that may implement a variety of ISA-level memory models,
not just SC. Furthermore, RTLCheck does not require complicated
proofs as the LTS setup does, and does not require the design to be
written in Bluespec to be synthesizable.

9 CONCLUSION
Memory consistency models are notoriously difficult to specify,
let alone to implement properly. Hardware implementations may
reorder memory operations to improve memory performance, or
use speculative approaches in an effort to extract performance
while maintaining ordering. The consequence of such approaches
is implementation complexity, which results in the types of memory
ordering bugs that continue to appear regularly in processors even
today. Furthermore, no prior general-purpose memory consistency
verification toolchain has been able to extend its reach all the way
down to the level of RTL, forcing designers to instead rely largely
on empirical black-box testing.

RTLCheck closes the final missing link in the verification stack:
it enables verification of the memory ordering behavior of arbitrary
RTL against an arbitrary microarchitecture-level ordering specifi-
cation for a suite of litmus tests. This verification, when combined
with the rest of the Check suite, constitutes a top-to-bottom ver-
ification stack that spans from high-level software, through the
ISA, all the way down to RTL, within a single unified framework.
RTLCheck is open-source (apart from the commercial JasperGold
verifier) and is available at github.com/ymanerka/rtlcheck.
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