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Abstract
Memory consistency models (MCMs) which govern inter-
module interactions in a shared memory system, are a signif-
icant, yet often under-appreciated, aspect of system design.
MCMs are defined at the various layers of the hardware-
software stack, requiring thoroughly verified specifications,
compilers, and implementations at the interfaces between
layers. Current verification techniques evaluate segments of
the system stack in isolation, such as proving compiler map-
pings from a high-level language (HLL) to an ISA or proving
validity of a microarchitectural implementation of an ISA.

This paper makes a case for full-stack MCM verification
and provides a toolflow, TriCheck, capable of verifying that
the HLL, compiler, ISA, and implementation collectively up-
hold MCM requirements. The work showcases TriCheck’s
ability to evaluate a proposed ISA MCM in order to ensure
that each layer and each mapping is correct and complete.
Specifically, we apply TriCheck to the open source RISC-
V ISA [55], seeking to verify accurate, efficient, and legal
compilations from C11. We uncover under-specifications and
potential inefficiencies in the current RISC-V ISA documen-
tation and identify possible solutions for each. As an example,
we find that a RISC-V-compliant microarchitecture allows
144 outcomes forbidden by C11 to be observed out of 1,701
litmus tests examined. Overall, this paper demonstrates the
necessity of full-stack verification for detecting MCM-related
bugs in the hardware-software stack.
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Figure 1. A C11 program that intermittently produces re-
sults disallowed by the C11 MCM when compiled by
Clang++ v3.8 and run on modern ARM/Android hardware.

1. Introduction
Modern computer systems employ increasing amounts of het-
erogeneity and specialization to achieve performance scaling
at manageable power and thermal levels. Reaping the full
benefits of these heterogeneous and parallel systems often
requires the cores to be able to communicate through shared
memory. This in turn necessitates memory consistency mod-
els (MCMs) [1, 17, 28], which specify the values that can be
legally returned when loads access shared memory. MCMs
are defined at the various layers of the hardware-software
stack and are central to hardware and software system design.
Properly designed MCMs enable programmers to synchro-
nize and orchestrate the outcomes of concurrent code. Poorly
designed MCMs can underspecify inter-core communication
and lead to unreliability.

Several categories of problems can arise when translating
a program from a high-level language (HLL) into correct,
portable, and efficient assembly code. These include: (1) ill-
specified or difficult-to-support HLL requirements regarding
memory ordering; (2) incorrect compilation or mapping of
instructions from the HLL to the target ISA; (3) inadequate
ISA specification; and (4) incorrect microarchitectural imple-
mentation of the ISA. If any of these issues are present in the
hardware-software stack, code compiled for a given ISA may
produce incorrect results.

Mis- and under-specification of MCMs in modern hard-
ware is a real problem that leads to processors producing
incorrect or counter-intuitive outcomes [4]. Consider the C11
program in Figure 1. When compiled by Clang++ v3.8, the
resulting program intermittently produces a result that is ille-
gal according to the C11 specification [12] when run on some



ARM hardware platforms. This behavior was first reported
by Alglave et al. [2]. We have observed the phenomenon on a
Galaxy Nexus (ARM Cortex-A9) and a Nexus 6 (Qualcomm
Snapdragon 805). In this particular example, the illegal out-
come occurs because hardware does not preserve program
order (i.e., the original thread ordering) for reads of the same
address. This behavior was formally acknowledged by ARM
as a bug in 2011 [4], and is henceforth referred to in this
paper as the ARM load→load hazard.

The ARM load→load hazard arose because the ARM ISA
specification was ambiguous regarding the required ordering
of same address loads, leading some implementations to relax
the ordering. A precise ISA MCM specification is central
to facilitating accurate translation from HLLs to assembly
programs and implementing hardware that can correctly
execute these programs. If the ISA MCM is unclear, or if
its definition is fundamentally at odds with the requirements
of the HLL1 it intends to support, there is no longer a
verifiable interface for compilers to target and for hardware
to implement.

When errors do arise, their causes may be debated. Re-
gardless of where blame is assigned, designers may propose
a solution that affects other layers of the hardware-software
stack out of convenience or necessity. In this case, due to
the existence of buggy microarchitectures in the wild and the
relative maturity of the ARM ISA, ARM elected to solve the
problem in the compiler by stipulating that additional fences
be added [4].

This paper advocates for MCMs as first-class citizens in
the design of hardware-software ecosystems. It makes the
following contributions:

• We present TriCheck, a framework for full-stack MCM
verification. We demonstrate how TriCheck can aid system
designers in verifying that HLL, compiler, ISA, and imple-
mentation align well on MCM requirements. In particular,
TriCheck supports iteratively designing an ISA MCM that
provides an accurate and minimally-constrained target for
compiled HLL programs. Our verification methodology
systematically compares the language-level executions of
HLL programs with their corresponding ISA-level execu-
tions on microarchitectural implementations of the ISA
in question. When a microarchitectural execution differs
from its corresponding language-level execution in a way
that is illegal, TriCheck provides information that aids de-
signers in determining if the cause is an incorrect compiler
mapping, ISA specification, hardware implementation, or
even HLL specification in some cases (see Section 7).
• We apply TriCheck to the open-source RISC-V ISA [55]

to validate TriCheck’s applicability to modern ISA design.
In particular, we assess the accuracy, precision, and com-
pleteness of the specified RISC-V MCM in serving as a

1 Throughout this paper we will focus on the C11/C++11 HLL MCM, as it
is widely applicable and rigorously defined [7].

compiler target for C11 programs. Our work finds gaps in
the RISC-V MCM specification. In particular, for a suite
of 1,701 litmus tests, we present a microarchitecture that
is compliant with the RISC-V specification yet incorrectly
allows 144 outcomes forbidden by C11 to be observed.
• Based on the results of our evaluation, we propose im-

provements to the RISC-V ISA and MCM specification,
in order to address the model’s current shortcomings. A
formalization of our proposal in Alloy [25, 57] is ongoing
work.
• We showcase the benefits of full-stack MCM verification

to areas other than ISA design by discussing the use of
TriCheck to find two counterexamples [36] to the suppos-
edly proven-correct trailing-sync compiler mappings from
C11 to the Power and ARMv7 architectures [8].

2. Background: Features of Memory Models
MCMs specify the rules and guarantees governing the order-
ing and visibility of accesses to shared memory. Frequently
regarded as the most intuitive MCM, Sequential Consistency
(SC) [28] requires that the result of a program execution is the
same as if all cores execute their own instructions in program
order (PO), and a total global order exists on all instructions
from all cores such that each load returns the value written by
the most recent store to the same address. Unfortunately, com-
mon microarchitectural optimizations violate SC, resulting in
low performance for naive SC implementations. In hardware,
there have been many attempts at mitigating SC’s perfor-
mance cost, commonly leveraging techniques such as aggres-
sive post-retirement speculation and rolling back execution
in the case of a coherence violation [10, 13, 18, 19, 43, 56].
Additionally, techniques have been proposed that aim to en-
force SC only for conflicting accesses [20, 29, 49]. Never-
theless, most manufacturers have elected to build hardware
with MCMs that relax SC. Various issues can arise when the
effects of relaxing memory orderings are not carefully consid-
ered at ISA design time. Here we provide some examples of
MCM features that are relevant to our case study and results
in Sections 5 and 6.

2.1 Coherence and Same-Address Ordering
Coherence ensures that (1) all stores are eventually made
visible to all cores and (2) there exists a single total order that
all threads agree on for all stores to the same address [16, 17].
Consistency can be thought of as a superset of coherence in
that it is additionally concerned with orderings of accesses
to different addresses. Accesses from the same thread to the
same address generally must maintain program order, but
there are exceptions: some old Power models and SPARC
RMO relax same-address load→load ordering [50, 51].

Notably, imprecision in the coherence specification led to
the ARM load→load hazard discussed in Section 1. ARM
acknowledged that due to the vast number of load instructions
in programs, binary patching in the linker is infeasible;
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Figure 2. Runtimes of three variants of the Parallel Sieve of
Eratosthenes [11] on an 8-core Samsung Galaxy S7 for up to
8 threads.

they instead suggest that compilers be rewritten to issue a
dmb fence instruction immediately following atomic 2 loads.
As one demonstration of the cost of imprecise ISA MCM
specifications, we estimate the overhead of this workaround
using the parallel Sieve of Eratosthenes algorithm [11]. This
application gives the same results regardless of whether there
is any synchronization between threads. Thus, its reading
and marking of entries can be implemented with either
relaxed atomics or sequentially consistent atomics without
compromising correctness.

We implemented three variants of the parallel sieve algo-
rithm and recorded their runtimes for a problem size of 108

on a Samsung Galaxy S7 with an Exynos 8890 8-core proces-
sor. Figure 2 shows the run times for thread counts between
1 and 8. The first of the three variants uses relaxed atomics,
which map to ordinary loads and stores on ARM. The second
uses relaxed atomics with a dmb fence added after relaxed
loads, in accordance with ARM’s recommended fix for the
hazard. The third uses sequentially consistent (SC) atomics
(implemented by surrounding the relevant stores with dmb

fences in addition to placing dmb fences after the relevant
loads—the standard ARM recipe).

The relaxed variant with the fix is always slower than the
uncorrected relaxed atomic variant; this is due to the extra dmb
fence after relaxed loads. The overhead of the fix is 15.3%
additional execution time at 8 threads. Furthermore, the
performance of the fixed variant degrades to the level of fully
sequentially consistent atomics at 8 threads. This experiment
indicates that the overhead of fixing the load→load hazard
can be quite significant. We revisit the issue of same address
load-load ordering in the context of the RISC-V MCM in
Section 5.1.3.

2.2 Dependencies
A dependency relates a load with a load or store that is later
in program order (PO). An address dependency results when

2 C11 uses “atomic” to mean “memory accesses used for synchronization”,
not just for read-modify-write.

Intial conditions: x=0, y=0
T0 T1 T2

a: st(x,1,rlx) b: r0 = ld(x, rlx) d: r1 = ld(y, acq)
c: st(y,1,rel) e: r2 = ld(x, rlx)

Forbidden C11 Outcome: r0=1, r1=1, r2=0

Figure 3. C11 variant of the Write-to-Read Causality (WRC)
litmus test. T0, T1, and T2 are three threads. The st and ld of
y perform release-acquire synchronization.

Initial conditions: x=0, y=0
T0 T1 T2 T3

a: st(x,1,sc) b: st(y,1,sc) c: r0 = ld(x,sc) e: r2 = ld(y,sc)
d: r1 = ld(y,sc) f: r3 = ld(x,sc)

Forbidden C11 Outcome: r0=1, r1=0, r2=1, r3=0

Figure 4. C11 variant of the Independent Reads of Indepen-
dent Writes (IRIW) litmus. All accesses are SC atomics.

the address accessed by a load or store depends syntactically3

on the value returned by a PO-prior load. A data dependency
exists between a load and a PO-later store when the store’s
value depends syntactically on the loaded value. A control de-
pendency occurs when the control flow decision of whether to
execute a load or store depends syntactically on the value re-
turned by a PO-prior load. Intuitively, it may seem impossible
not to enforce dependencies, as a dependee seemingly cannot
execute until it has all of its inputs available. However, in the
presence of microarchitectural speculation, the dependee can
in fact behave as if it were reordered with the instruction it
depends on [37], unless such behavior is explicitly prevented
by the ISA specification.

2.3 Store Atomicity, Cumulativity, and C11 Atomics
2.3.1 Store Atomicity
As defined by Collier, a store is multiple-copy atomic (MCA)
if all cores in the system, including the performing core,
conceptually see the updated value at the same instant [14].
As a performance optimization, some architectures allow a
core to read its own writes prior to their being made visible
to other cores; we refer to this as read-own-write-early-
multiple-copy atomic (rMCA) [1]. However, rMCA writes
must be made visible at the same time to all cores other than
the performing core. Weaker models, like ARM and Power,
feature non-multiple-copy atomic (nMCA) stores that may
become visible to some remote cores before they become
visible to others.

Figure 3 demonstrates the often counter-intuitive effects
of nMCA stores. The specified non-SC outcome corresponds
to a causality chain where T0 sets a flag by writing 1 to x, and

3 ARM and Power in particular respect syntactic dependencies, which define
dependencies according to the syntax of the instructions. This is broader than
semantic dependencies, which only include true dependencies, i.e., those
which could not in theory be optimized away.



C/C++ Instruction Power
ld rlx ld
ld acq ld; ctrlisync
ld sc hwsync; ld; ctrlisync
st rlx st
st rel lwsync;st
st sc hwsync; st

Table 1. Leading-sync compiler mapping from Power to
C11 [38].

T1 reads the updated value of x, subsequently setting its own
flag by writing 1 to y. T2 then sees the update of y, reading 1;
however, it has still not observed the update of x and reads its
value as 0. If this C11 program is compiled down to regular
loads and stores on a nMCA system, the forbidden outcome
will (perhaps surprisingly) be observable.

C11 supports cross-thread synchronization via acquire and
release operations. These operations were initially proposed
as part of release consistency (RC) [17]. An acquire ensures
that it is made visible before accesses after the acquire in
program order. Likewise, a release ensures that accesses
before it in program order are made visible before the release.
The store and load of y in Figure 3 form a release-acquire
pair that synchronizes the values between T1 and T2. C11
additionally requires release-acquire synchronization to be
transitive [9, 12]. This means that T2 must observe the store
to x when it acquires y, because T1 observed the store to x
before its release of y. As a result, the outcome in Figure 3 is
forbidden.

2.3.2 Cumulativity
An nMCA architecture must include cumulative fences in or-
der to support C11-style cross-thread synchronization. Fences
order specified accesses in the fence’s predecessor set (i.e., ac-
cesses before the fence) with specified accesses in the fence’s
successor set (i.e., accesses after the fence)4. Cumulative
fences additionally include accesses performed by threads
other than the fencing thread in the predecessor and succes-
sor sets. Recursively, memory operations (from any thread)
that have performed prior to an access in the predecessor set
are also members of the predecessor set. Also recursively,
memory operations (from any thread) that perform after a
load that returns the value of a store in the successor set are
also in the successor set.

2.3.3 C11 Compiler Mappings
The C11 memory model has various forms of synchroniza-
tion with different strength/performance trade-offs, and so
ISAs often provide a corresponding set of synchronization
primitives with similar trade-offs. As C11 release-acquire syn-
chronization is transitive, it requires cumulative ordering at

4 Predecessor and successor sets are called group A and group B in descrip-
tions of fences in the Power and ARM memory models [46].

the hardware-level between a release-acquire pair. Compiler
mappings for well-known nMCA architectures such as Power
and ARMv7 enforce all cumulative ordering requirements of
the C11 release-acquire pair on the release side, leaving the
acquire side implementation non-cumulative. In this case, the
cumulative fence on the release side would require that reads
and writes in the predecessor set be ordered with writes in the
successor set, and that reads in the predecessor set be ordered
with reads in the successor set (i.e., cumulative lightweight
fence). Power mappings implement release operations using
a similar cumulative lightweight fence (lwsync). With all cu-
mulative orderings being enforced on the release side, acquire
operations only need to locally order reads before the fence
with reads and writes after the fence. Power and ARMv7 can
implement acquire operations using non-cumulative fences
(e.g., ctrlisync and ctrlisb, respectively5). We adopt the
Power approach, which we provide in Table 1, in our pro-
posed mappings for the RISC-V ISA in Section 4.

C11 also supports sequentially consistent (SC) atomics.
An SC load is an acquire operation and an SC store is a
release operation, and there must also be a total order on
all SC atomic operations that is respected by all cores. As
such, the program in Figure 4 must forbid the listed outcome,
as there is no total order of SC operations that would allow
it. At the architecture level, cumulative lightweight fences
as described for release-acquire synchronization are not
sufficient to implement the required ordering for this program.
Even if a cumulative lightweight fence was placed between
each pair of loads on T2 and T3, neither T2 nor T3 reads
from writes after the fences, so the writes observed before the
fences need not be propagated to other cores. Instead, fences
used to implement C11 SC atomics must be cumulative fences
that order reads and writes before the fence with reads and
writes after the fence (i.e., cumulative heavyweight fence).
Power and ARMv7 use cumulative heavyweight fences (sync
and dmb, respectively) to implement C11 SC atomics.

3. Full-Stack MCM Verification
TriCheck is the first tool capable of full stack MCM verifi-
cation bridging the HLL, compiler, ISA, and microarchitec-
ture levels. MCMs are defined at the various layers of the
hardware-software stack, and errors at any layer or in trans-
lating between layers can produce incorrect results. No other
tool can run this top-to-bottom analysis, and TriCheck does
so efficiently enough to find real bugs.

3.1 Background: Check and Herd
The TriCheck approach builds on the Check [21, 30, 31,
32, 35] family of tools. A hardware designer can use a
domain-specific language (DSL) called µSpec to describe
a microarchitecture by defining a set of ordering axioms.
This specification along with a collection of user-provided

5 ctrlisync and ctrlisb represent the cmp; bc; isync and
teq; beq; isb instruction sequences, respectively.



litmus tests and corresponding required outcomes for each
test serve as inputs to Check tools. Check tools evaluate the
correctness of the processor model by comparing the required
litmus test outcomes with outcomes that are observable on
the model. Furthermore, Check enables designers to model
speculative execution as well as the subtle interplay between
coherence and consistency [35] and virtual memory and
consistency [31].

TriCheck uses these tools along with Herd [2], a MCM
simulator that takes as input a user-defined MCM (in a
concise format) and a litmus test and outputs all executions of
that tests that are permitted by the model. In contrast with the
Check tools, Herd defines more abstract axiomatic models
that do not depend on microarchitectural details. Recent
work has added support for language-level MCMs, and in
particular, a model has been constructed for C11 [6], which
we use in our case study in Section 5.

3.2 The TriCheck Methodology
The ISA MCM serves as a contract between hardware and
software. It defines ordering semantics of valid hardware
implementations and provides ordering-enforcement mech-
anisms for compilers to leverage. We identify four primary
MCM-dependent system components: a HLL MCM, com-
piler mappings from the HLL to an ISA, an ISA MCM, and
a microarchitectural implementation of the ISA. In Figure 6,
we illustrate the TriCheck framework and include as inputs a
HLL MCM, HLL→ISA compiler mappings, an implementa-
tion model, and a suite of HLL litmus tests. The ISA places
constraints on both the compiler and the microarchitecture
and is present in TriCheck via these two inputs. Given these
inputs, TriCheck evaluates whether or not they can success-
fully work together to preserve MCM ordering semantics
guaranteed to the programmer when HLL programs are com-
piled and run on target microarchitectures.

We envision architects using TriCheck early in the ISA
or microarchitecture design process. While architects are
selecting hardware optimizations for improved performance
or simplifications for ease of verification, TriCheck can be
used to simultaneously study the effects of these choices
on the ISA-visible MCM and the ability of their designs to
accurately and efficiently support HLL programs.

However, TriCheck is not limited to new or evolving ISA
designs. Similar to the ARM load→load hazard in Section 2,
there are cases when other elements (e.g., the compiler) are
modified in response to ISA or microarchitecture MCM bugs
out of convenience or necessity. When a solution is proposed
for a MCM bug—such as fence insertion in ARM’s case—
TriCheck can be used to verify that adding the fence did
indeed prohibit the forbidden outcome across relevant lit-
mus tests. Our case study in Section 5 showcases TriCheck’s
applicability to ISA design by focusing on the time in the
design process when the ISA MCM can be modified. Sec-
tion 7 describes ongoing work where we are using TriCheck
to evaluate compiler mappings.

Figure 5. Example of a C11 Herd litmus test template for
the WRC litmus test.

TriCheck is a litmus-test-based verification framework. To
get the best coverage, TriCheck should consider a variety
of interesting tests. We provide a litmus test generator capa-
ble of producing a suite of interesting tests from litmus test
templates containing placeholders that correspond to differ-
ent types of memory or synchronization operations, and a
set of HLL MCM primitives to insert into these placehold-
ers. An example template is shown in Figure 5. With the
C11 MCM for example, litmus test templates would contain
placeholders for memory reads, writes, and/or fences. Our
litmus test generator would then produce all permutations of
each test template, featuring all combinations of applicable
C11 memory order primitives. This allows us to verify ISA
MCM functionality for all possible memory order interac-
tions and synchronization scenarios for a given litmus test.
Other methods of litmus test generation are possible, and
in particular, a new tool has been designed to produce the
optimal set of litmus tests for a given memory model [33].

Figure 6 depicts the TriCheck toolflow. The gray shaded
boxes represent TriCheck’s non-litmus-test INPUTS: a HLL
MCM specification, compiler mappings from HLL MCM
primitives to ISA assembly instructions, and a µSpec model
corresponding to an implementation of the ISA MCM.

In describing the TriCheck toolflow, we will discuss how
the inputs are combined, evaluated and can be refined in
order to prohibit all illegal-according-to-HLL executions
and to permit as many legal-according-to-HLL executions as
possible. (This results in correct but minimally constrained
HLL programs.) Given its inputs, the TriCheck toolflow
proceeds as follows:

1. HLL AXIOMATIC EVALUATION: The suite of HLL litmus
tests is run on a HLL Herd model (e.g., the C11 Herd
model) to determine the outcomes that the HLL MCM
permits or forbids for each at the program level.

2. HLL→ISA COMPILATION: Using the HLL→ISA com-
piler mappings, TriCheck translates HLL litmus tests to
their assembly language equivalents.
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Figure 6. TriCheck toolflow for full-stack MCM verification.
Bugs may require modified ISA or HLL MCMs, different sets
of enforced orderings from either the compiler or the microar-
chitecture, or more or fewer ISA instructions with specified
ordering semantics. Numbers correspond to TriCheck steps
enumerated in Section 3.2.

3. ISA µSPEC EVALUATION: The suite of assembly litmus
tests is run on the Check model of the ISA to determine
the outcomes that are observable or unobservable on the
microarchitecture.

4. HLL-MICROARCHITECTURE EQUIVALENCE CHECK:
The results of Step 1 and Step 3 are compared for each
test to determine if the microarchitecturally realizable out-
comes are stronger than, weaker than, or equivalent to the
outcomes required by the HLL model. A stronger than
(resp. weaker than) outcome corresponds to a HLL pro-
gram that is permitted (resp. forbidden) by the HLL MCM,
yet unobservable (resp. observable) on the microarchitec-
tural implementation of the ISA. If Step 4 concludes that
the microarchitecturally realizable outcomes are more re-
strictive than what the HLL requires, the designer may
wish to relax the ISA or microarchitecture for performance
reasons. On the other hand, some correction is mandatory
when outcomes forbidden by the HLL are observable on
the microarchitecture.

After running TriCheck on a combination of inputs, a sub-
sequent REFINEMENT step is possible. This step corresponds
to refining any combination of the HLL MCM, compiler
mappings, and microarchitectural implementation. This re-
finement step is the process of modifying an input in response
to a microarchitectural execution that differs from the HLL-
specified outcome for a given set of program executions. The
purpose of refinement is to have a better match between HLL
requirements and execution outcomes, whether this is to elim-
inate bugs or avoid overly-constraining the implementation.

4. Case Study: The RISC-V ISA MCM
The RISC-V ISA is a free, open RISC ISA. A widely-utilized,
free and open ISA offers some key advantages, such as well-

C11 → RISC-V Base Compiler Mappings
C11 Atomics Intuitive Refined

ld rlx ld ld
ld acq ld;f[r,m] ld;f[r,m]
ld sc f[m,m];ld;f[m,m] hwf;ld;f[r,m]
st rlx st st
st rel f[m,w]; st lwf;st
st sc f[m,m]; st hwf;st

Table 2. Intuitive and Refined compiler mappings from C11
to RISC-V Base ISA. f[a,b] is a fence that orders type a
accesses before and b accesses after the fence. lwf and hwf
are the cumulative lightweight and heavyweight fences from
Section 2.3.3. r, w, and m are reads, writes, and memory
operations, respectively. Refined mappings are presented in
Section 5.

maintained compiler and software tool-chains and even open-
source hardware designs. However, a clearly defined ISA
MCM is crucial in achieving this vision. To demonstrate
the applicability of our framework to modern ISA design,
we have conducted a case study that applies our toolflow
from Section 3 to the latest version of the RISC-V ISA
specification [55].

In this experiment, we study both the Baseline (labeled
“Base”) and the Baseline + Atomics Extension (labeled
“Base+A”) RISC-V ISAs, evaluating each on how efficiently
and accurately they are able to (or not able to) serve as
compiler targets for C11 programs. For example, the pro-
gram in Figure 3 can show the forbidden outcome when
compiled to the RISC-V ISA (via the “Intuitive” compiler
mappings detailed in Tables 2 and 3) if the microarchitec-
tural implementation leverages nMCA stores (which the
RISC-V specification allows). For the Base ISA, we show
that there is no way to provide a correct mapping. For the
Base+Atomics ISA, we show that likely-unintended ineffi-
ciencies can result from modifying the mapping to force the
correct C11-required outcome.

4.1 RISC-V Baseline MCM
4.1.1 Relaxed memory model
The Base RISC-V MCM (Section 2.7 of the RISC-V ISA
specification [55]) allows multiple threads of execution within
a single user address space that may communicate and
synchronize via the shared memory system. Each thread
must observe its own memory operations as if they executed
sequentially in program order. However the manual specifies
that RISC-V has a “relaxed memory model” that requires
explicit FENCE instructions to guarantee any specific ordering
between memory operations as viewed by other RISC-V
threads.

4.1.2 FENCE Instructions for Memory Accesses
RISC-V allows any combination of memory read and write
instructions may be ordered with any combination of the



C11 → RISC-V Base+A Compiler Mappings
C11 Atomics Intuitive Refined

ld rlx ld ld
ld acq AMO.aq AMO.aq
ld sc AMO.aq.rl AMO.aq.sc
st rlx st st
st rel AMO.rl AMO.rl
st sc AMO.aq.rl AMO.rl.sc

Table 3. Intuitive and Refined compiler mappings from C11
to RISC-V Base+A ISA. AMO.a is an AMO operation with
the a bit set, etc. Refined mappings are presented in Section 5.

same. The manual states that, “Informally, no other RISC-
V thread or external device can observe any operation in
the successor set following a FENCE before any operation
in the predecessor set preceding the FENCE.” We interpret
predecessor and successor sets here to be the accesses of the
specified type(s) that come before and after the FENCE in
program order, respectively.

4.1.3 Dependencies
Of particular note is the fact RISC-V does not require mem-
ory ordering to be enforced for dependent instructions, even
though this can result in counter-intuitive outcomes in multi-
processor systems [37]. Many commercial architectures such
as x86, ARM, and Power respect address, data, and some
control dependencies between instructions, and such depen-
dencies can also be used as lightweight synchronization to en-
force orderings locally [46]. More importantly, if dependency
orderings are not preserved by default, they must be explicitly
enforced through ISA instructions when necessary. For exam-
ple, the Linux kernel includes a read barrier depends()

barrier that is used to conditionally enforce data dependencies
on systems that do not respect them, such as Alpha [52]. We
note that the current Linux port of RISC-V does not map
read barrier depends() to any fence, and so may be in-
correct for some microarchitectural implementations [44].
Our recommendation is to require the preservation of depen-
dency orderings in the ISA memory model. Other issues with
the RISC-V memory model are discussed in Section 5.

4.2 RISC-V Baseline + Atomics Extension
4.2.1 RMWs with memory orders
The Standard Extension for Atomic Instructions (Chapter 6
of the RISC-V ISA specification [55]) contains atomic fetch-
and-op instructions (i.e., AMOs) and Load-Reserve/Store-
Conditional (LR/SC) instructions. Both of these read-modify-
write mechanisms may be annotated with various memory
ordering semantics—unordered, acquire, release, and sequen-
tially consistent. The manual states that these ordering mech-
anisms are meant to “implement the C11 and C++11 memory
models efficiently.” They are defined as follows:

• Unordered: “No additional ordering constraints are im-
posed on the atomic memory operation.”

• Acquire (Acq): “No following memory operations on this
RISC-V thread can be observed to take place before
the Acq memory operation.” The manual also states that
FENCE R, RW suffices to implement acquire orderings.
• Release (Rel): “The Rel operation cannot be observed

to take place before any earlier memory operations
on this RISC-V thread.” The manual also states that
FENCE RW, W suffices to implement release orderings.
• Sequentially Consistent (SC): “The SC operation is se-

quentially consistent and cannot be observed to happen
before any earlier memory operations or after any later
memory operations in the same RISC-V thread, and can
only be observed by any other thread in the same global
order of all sequentially consistent atomic memory opera-
tions to the same address domain.”

4.2.2 Store atomicity
The manual states that nMCA implementations are allowed,
but that for SC operations, the specification requires “full
sequential consistency for the atomic operation which implies
global store atomicity in addition to both acquire and release
semantics.”

4.3 Microarchitectural Implementations
To support our evaluation of the RISC-V MCMs with
TriCheck, we implemented in µSpec a set of microarchi-
tectures (summarized in Table 7) that relax various aspects
of program order and store atomicity while remaining RISC-
V-compliant. We constructed these models by extending a
model of the RISC-V Rocket Chip [5], a 6-stage in-order
pipeline that supports the Base RISC-V ISA and some op-
tional extensions, including the Atomics extension. These
models were augmented with the appropriate RISC-V in-
structions depending on whether they were implementing the
Base or Base+A ISA. The ordering variations we study are:

1. WR: W→R reordering is achieved by buffering stores
in a FIFO queue prior to eventually pushing them out
to the rest of the memory hierarchy. Value forwarding is
disallowed, but younger loads may complete when their
effective address does not match the address of any earlier
store still in the store buffer.

2. rWR: Builds on WR by allowing value forwarding from
stores in the store buffer to later loads of the same address.

3. rWM: Extends rWR by allowing writes (to different
addresses) to retire from the store buffer out of order.
Coherence requires a total global order on stores to the
same address.

4. rMM: Extends rWM by allowing reads to commit out
of order with earlier reads or writes. We maintain that
read→write ordering must be maintained for same ad-
dress reads and writes, but we allow reordering for all
read→read pairs in this baseline version, including same
address read→read pairs.



Relaxed PO Store Atomicity
µSpec Model W→R W→W R→M MCA rMCA nMCA
WR 3 3

rWR 3 3

rWM 3 3 3

rMM 3 3 3 3

nWR 3 3

nMM 3 3 3 3

A9like 3 3 3 3*

Figure 7. µSpec models that relax various aspects of pro-
gram order and store atomicity while remaining RISC-V-
compliant [1]. Section 4.3 (Point 7) discusses the difference
between A9like and nMM.

5. nWR: Extends rWR by allowing cores to share store
buffers. This is analogous to having a shared write-through
cache [12], and allows nMCA stores.

6. nMM: Extends rMM by allowing shared store buffers in
the same vein as nWR.

7. A9like: To demonstrate that the visibility of nMCA be-
havior does not depend on having a design that con-
tains a shared buffer or shared write-through cache, we
model another microarchitecture with ISA-visible relax-
ations that match those of nMM. This time we leverage
the ability of Check to model subtleties of the cache-
coherence/consistency interface. To implement nMCA
stores, this model features: i) write-back caches that al-
low multiple requests for write permission (for different
addresses) to be in progress at the same time and ii) a
non-stalling directory coherence protocol that allows the
storing core to forward the store’s value to another core
before it has received all invalidations for the access. In
this scenario, coherence is preserved, but nMCA stores
arise. This design captures reordering features similar to
those allowed by the ARM Cortex-A9 [3].

5. Applying our Methodology to RISC-V
As a case study of our approach, we use TriCheck to analyze
the RISC-V ISA’s memory models. We divide our case study
into two halves, one for the Base ISA model and one for
the Base+A ISA model. For each of these specifications, we
begin with the MCM as specified in Sections 4.1 and 4.2
respectively. Our initial compiler mappings are the “Intuitive”
mappings from Table 2. These mappings are derived from
information in the RISC-V manual [55]. For the microarchi-
tecture component of our analysis, we utilize the microarchi-
tectures detailed in Section 4.3 (augmented with instructions
unique to the Base or Base+A ISA as appropriate), starting
with the strongest—WR.

We apply the iterative design and refinement methodology
of Figure 6 to these inputs. When bugs are encountered, we
propose a solution and re-run TriCheck to confirm the fix is

Initial conditions: x=0, y=0
T0 T1 T2

a: sw x1, (x5) b: lw x2, (x5) e: lw x3, (x6)
c: fence rw, w f: fence r, rw
d: sw x2, (x6) g: lw x4, (x5)

Forbidden C11 Outcome: x1=1, x2=1, x3=1, x4=0

Figure 8. Figure 3 WRC variant compiled to RISC-V Base
using Table 2 “Intuitive” compiler mappings. Registers x5
and x6 hold the addresses of x and y respectively on all cores.

Initial conditions: x=0, y=0
T0 T1 T2 T3

a: fence rw, rw c: fence rw, rw e: fence rw, rw k: fence rw, rw
b: sw x1, (x7) d: sw x2, (x8) f: lw x3, (x7) l: lw x5, (x8)

g: fence rw, rw m: fence rw, rw
h: fence rw, rw n: fence rw, rw
i: lw x4, (x8) o: lw x6, (x7)

j: fence rw, rw p: fence rw, rw
Forbidden C11 Outcome: x1=1, x2=1, x3=1, x4=0, x5=1, x6=0

Figure 9. Figure 4 IRIW variant compiled to RISC-V Base
using Table 2 “Intuitive” compiler mappings. Registers x7
and x8 hold the addresses of x and y respectively on all cores.

successful. Additionally, we incrementally explore weaker
and weaker microarchitectures from Table 7, pushing the
bounds of what the RISC-V MCMs allow. Our analysis shows
that parts of the current RISC-V MCMs are too weak and
others are too strong to implement C11 atomics correctly
and efficiently. We recommend a set of possible model
refinements to fix their problems, and use our framework
to ensure that these changes have the desired effect.

5.1 Base RISC-V Model Analysis & Refinement
The Base ISA only provides memory fence instructions to
establish synchronization between threads. As such, C11
atomics must be implemented in the Base ISA using a
combination of fences and ordinary loads and stores.

5.1.1 Lack of Cumulative Lightweight Fences
As covered in Section 2.3, C11 release-acquire synchroniza-
tion is required to be transitive, ordering both accesses before
a release in program order and accesses that were observed
by the releasing core prior to the release. As such, in the
WRC variant of Figure 3, it is forbidden for T2 to return 0 for
its load of x if it observes the release to y using its acquire.
This ordering is not implicitly enforced for regular loads and
stores in nMCA memory systems, which RISC-V allows.

When we ran the Base MCM through TriCheck using
the “Intuitive” compiler mappings from Table 2, the test in
Figure 3 compiled down to that in Figure 8. Analysis of this
program with Check indicated that the forbidden outcome
was observable on the microarchitecture. Upon investigation



of the results, we deduced that the bug was due to the absence
of cumulative fences in the Base ISA.

The Base RISC-V ISA does not contain any cumulative
fences that are capable of enforcing this ordering. Thus, this
problem cannot be fixed simply by changing the compiler
mapping. Our recommended solution to the problem is to
modify the ISA such that the fences used to implement
releases are cumulative, specifically cumulative lightweight
fences as defined in Section 2.

We modified the microarchitectural implementation of the
fences used for releases to be cumulative lightweight fences,
and reran TriCheck with the new microarchitecture. This time,
the tests such as WRC that require cumulative lightweight
orderings disallowed the forbidden outcomes.

5.1.2 Lack of Cumulative Heavyweight Fences
As discussed in Section 2.3, the enforcement of a total order is
necessary for C11 SC atomics. This requirement is exhibited
by the variant of the IRIW litmus test shown in Figure 4,
whose non-SC outcome is forbidden by C11.

Using the “Intuitive” compiler mappings from Table 2, the
test compiles down to Figure 9 for the Base ISA. Check
reported that the forbidden outcome was allowed by our
microarchitectural implementation for this test. Examination
of the graph generated by Check showed that this was also
due to the lack of cumulativity in fences. However, unlike
the WRC case above, cumulative lightweight fences between
the pairs of loads on T2 and T3 are insufficient to enforce
the ordering required, and we verified this using TriCheck.
Instead, as discussed in Section 2.3, cumulative heavyweight
fences are required to prohibit the forbidden outcome in this
case - a feature which the Base ISA does not provide.

As in Section 5.1.1, our recommended solution to this
problem is to modify the ISA to include cumulative heavy-
weight fences. We modified the microarchitectural implemen-
tation to support cumulative heavyweight fences, changed
the compiler mappings to use these fences when mapping
sequentially consistent atomics, and reran the modified setup
through TriCheck. We observed that the forbidden outcome
of Figure 4 was disallowed with the new instructions and
mapping.

5.1.3 Reordering Loads to the Same Address
After making the above changes and rerunning TriCheck
on the modified setup, we observed that variants of the
CoRR and CO-RSDWI litmus tests were still producing
forbidden outcomes. These bugs were occurring because the
microarchitectural implementation was not ordering loads
to the same address (an ordering that RISC-V does not
require). As discussed in Section 2, C11 atomics require that
two loads of the same address maintain program order. The
“Intuitive” compiler mapping for relaxed atomics from Table 2
implements relaxed atomics with regular loads and stores,
which implies that the microarchitecture should enforce
this ordering requirement; however, the microarchitecture

Initial conditions: x=0, y=0
T0 T1 T2

a: sw x1, (x5) b: lw x2, (x5) d: amoadd.w.aq x0, x3, (x6)
c: amoswap.w.rl x2, x0, (x6) e: lw x4, (x5)

Forbidden C11 Outcome: x1=1, x2=1, x3=1, x4=0

Figure 10. RISC-V Base+A version of Figure 3 WRC vari-
ant using Table 3 “Intuitive” compiler mappings. Registers
x5 and x6 hold the addresses of x and y respectively on all
cores.

was not doing so because the Base ISA does not require
this. As a result, the forbidden outcome is visible on the
microarchitecture.

This issue can be fixed in one of two ways: either the
compiler mapping for C11 relaxed loads can be changed to
add a fence after each, or the ISA memory model can be
modified to require loads to the same address to be ordered
by hardware. As a relatively new ISA, RISC-V can use either
option. However, adding fences after each relaxed load can
result in significant performance degradation for programs
that liberally use relaxed atomics, as seen in Section 2.1. As
such, a more efficient solution is for the ISA memory model
to require program order to be preserved between two loads
to the same address. We modified the microarchitecture to
provide this ordering and used TriCheck to verify that the
forbidden outcome no longer occurred.

5.2 RISC-V Base+Atomics Model Analysis &
Refinement

Virtually all of the instructions unique to Base+A are read-
modify-write (RMW) instructions. The deficiencies in the
Base model mentioned above apply to the Base+A MCM
as well. However, analysis with TriCheck shows that the
new instructions in Base+A cannot implement C11 atomic
operations correctly and efficiently, as we detail below.

The RISC-V manual [55] states that an atomic load
operation may be implemented as an AMOADD to the zero
register and an atomic store operation can be implemented
as an AMOSWAP operation that writes the old value to the
zero register (in other words, by discarding the store and load
portions of certain RMWs).

5.2.1 Lack of Cumulative Releases
As discussed in Section 2.3, C11 releases are required to be
transitive by the C11 memory model, which necessitates cu-
mulative fences. However, release instructions in the current
RISC-V specification are not required to be cumulative, and
only order the accesses before them in program order. As a
result, using the “Intuitive” compiler mapping for atomics
in Table 3, the test in Figure 3 compiles down to that in Fig-
ure 10. Check analysis of this test indicates that the forbidden
outcome is visible on the microarchitecture, signifying a bug.

Note that even if the compiler mapping were changed
to use AMO.aq.rl operations (the strongest synchronization



Initial conditions: x=0, y=0
T0 T1

a: st(x,1,sc) c: r0 = ld(y,sc)
b: st(y,1,rlx) d: r1 = ld(x,sc)

Allowed C11 Outcome: r0=1, r1=0

Figure 11. A variant of the C11 Message Passing (MP)
litmus test where the store to y is a relaxed operation and can
bypass the store to x through roach motel movement.

Initial conditions: x=0, y=0
T0 T1

a: amoswap.w.aq.rl x1, x0, (x4) c: amoadd.w.aq.rl x0, x2, (x5)
b: sw x1, (x5) d: amoadd.w.aq.rl x0, x3, (x4)

Forbidden RISC-V Outcome: x1=1, x2=1, x3=0

Figure 12. RISC-V Base+A version of Figure 11 MP variant
using Table 2 “Intuitive” compiler mappings. Registers x4
and x5 hold the addresses of x and y respectively on both
cores.

instructions the ISA provides) for releases, the problem would
persist. Even though AMO.aq.rl operations are store atomic
and have both acquire and release semantics, they are not
cumulative and will not enforce the required ordering (we
verified this with TriCheck).

Our recommended solution to this issue is to make release
operations in the RISC-V ISA cumulative, requiring that ac-
cesses before a release in program order and writes observed
by the releasing core before the release be made visible be-
fore the release is made visible. Using TriCheck, we verified
that making these changes to the microarchitecture’s imple-
mentation of releases resulted in the forbidden outcome of
Figure 8 being correctly disallowed.

Furthermore, if the AMO.rl.sc instruction is MCA and
cumulative, then it is sufficient to implement an SC store (we
verified this using TriCheck). This is because the cumulative
release semantics ensure that all previous accesses (including
previously observed writes) are made visible before the
release, and the store atomicity of the release ensures that the
release is made visible to all cores at the same time.

5.2.2 Absence of Roach-Motel Movement for SC
Atomics

In the C11 memory model, SC loads and stores only need
to enforce acquire and release orderings respectively, in
addition to appearing in a total order observed by all cores.
SC loads do not need to implement release semantics and
SC stores do not need to implement acquire semantics [24].
As a result, ordinary loads and stores (as well as relaxed
atomics) that follow an SC store or precede an SC load
in program order can be reordered before the SC store or
after the SC load respectively. This is known as roach-motel
movement and intuitively corresponds to making a critical

section larger, which will not break code that uses atomic
operations and locks in well-structured ways [12]. Roach
motel movement allows acquires and releases to function
as one-way barriers, allowing more reordering of memory
operations and theoretically improved performance.

The RISC-V ISA requires both the aq and rl bits to be set
on an AMO operation in order to ensure the store atomicity
required to correctly implement SC operations. There is no
way to have MCA operations with only acquire or release
semantics, which would map closely to the requirements of
C11 SC loads and stores. As a result, the implementations
of SC loads and stores in the RISC-V Base+A ISA is too
strict, unnecessarily enforcing more orderings than the C11
model requires. For example, in the version of the mp litmus
test shown in Figure 11, the C11 memory model allows the
relaxed store to y to be reordered before the SC store to x by
roach motel movement. Thus, it is possible for T1 to observe
the store to y before it observes the store to x.

However, when using the “Intuitive” RISC-V mapping
from Table 3, the program in Figure 11 compiles down to that
in Figure 12. When we ran this program through Check’s
implementation verification, it deduced that the allowed
outcome was in fact forbidden by the microarchitecture.
Specifically, the acquire semantics of the AMO.aq.rl used
to implement the SC store to x prevents the store to y from
being reordered with it through roach motel movement.

One way to fix this excessive ordering enforcement is
to decouple the store atomicity setting of an AMO from
its acquire and release semantics, allowing AMOs to be
store atomic when only having acquire or release semantics.
We denote such store atomic AMOs as AMO.{aq|rl}.sc.
Using TriCheck, we verified that if SC loads are mapped
to AMO.aq.sc and SC stores are mapped to AMO.rl.sc, the
outcome in Figure 11 is allowed, and no forbidden outcomes
are allowed as a result of this relaxation.

5.2.3 Lazy Implementation of Cumulativity
In the C11 memory model, acquire and SC loads (resp.,
acquire and SC fences) can only synchronize with release
and SC stores (resp., release and SC fences). In other words,
if a release is observed by a relaxed atomic access, it is not
necessary for the thread performing the relaxed atomic access
to observe all accesses before the release as well. It is only
when the release is observed by an acquire or an SC load
that the accesses before the release must be observed by the
loading core. As such, in the version of the mp litmus test
shown in Figure 13, it is valid for T1 to observe the store to
y but then still return the old value of 0 for x. This is true
even though the execution of the two loads on T1 is locally
ordered through means of an address dependency (assuming
dependencies are respected—see Section 4.1). Enforcing that
releases only synchronize with acquire operations allows
for “lazy” implementations of cumulativity, which can delay
processing coherence invalidations until an acquire operation
is reached. Such implementations can help reduce false



Initial conditions: x=0, y=0
T0 T1

a: st(x,1,rel) c: r0 = ld(y,rlx)
b: st(y,x,rel) d: r1 = ld(r0, acq)

Allowed C11 Outcome: r0=x, r1=0

Figure 13. A variant of the C11 Message Passing (MP)
litmus test where the load of y is a relaxed operation and
need not synchronize with the store to y on T0. Note the
address dependency between the two instructions on T1.

Initial conditions: x=0, y=0
T0 T1

a: amoswap.w.rl x1, x0, (x4) c: lw x2, (x5)
b: amoswap.w.rl x4, x0, (x5) d: amoadd.w.aq x0, x3, (x2)

Forbidden RISC-V Outcome: x1=1, x2=x, x3=0

Figure 14. RISC-V Base+A version of Figure 13 MP variant
using Table 3 “Intuitive” compiler mappings. Registers x4
and x5 hold the addresses of x and y respectively on both
cores.

sharing and consume less bandwidth [15, 23, 26], and should
not be outlawed by an ISA memory model specification if
possible.

The C11 constraints on the observation of a release are
slightly different to the constraints on the observation of a
release in RISC-V. In RISC-V, a release is considered to syn-
chronize with respect to a given core when it is observed
by any load on that core, and not necessarily by an acquire.
Using the “Intuitive” compiler mappings from Table 3, the
test in Figure 13 compiles down to the code in Figure 14. The
microarchitectural verification step in our framework con-
firmed that the allowed outcome was unnecessarily forbidden
by the microarchitecture.

In order to allow this outcome and enable lazy, high-
performance implementations of the RISC-V Base+A ISA,
our recommend solution is to modify the ISA to dictate that
a release need only synchronize with respect to a core when
it is observed by an acquire operation from that core. Upon
making this modification to the microarchitectural implemen-
tation used in our analysis, we verified that the outcome from
Figure 13 was now allowed by the microarchitecture.

5.3 Refined RISC-V Compiler Mappings
At the conclusion of our RISC-V case study, we arrived at
the “Refined” compiler mappings from C11 to RISC-V Base
and Base+A outlined in Tables 2 and 3. We note that this case
study served to evaluate only Base and Base+A mappings
in isolation (i.e., we did not evaluate the mixing of fences
and AMO synchronization operations for supporting the C11
MCM). Similarly, ARMv7 mappings cannot inter-operate
with ARMv8 mappings [47]. Furthermore, one could imagine
different fence primitives for implementing C11 acquire

and release operations that feature more symmetry in terms
of ordering semantics (i.e., splitting cumulative ordering
responsibilities between acquire and release operations). Our
choice of fences here is meant to be as compatible as possible
with the current RISC-V specification and instruction format.

6. RISC-V MCM Shortcomings Quantified
As laid out in Section 4, Table 7, we evaluated a range of
RISC-V microarchitectures, based off the Rocket Chip [5],
featuring a diverse set of RISC-V compliant memory order
relaxations. These were mapped with the appropriate RISC-V
instructions depending on whether they were implementing
the Base or Base+A ISA. For each of the Base and Base+A
MCMs, Figure 15 shows results for riscv-curr and riscv-ours
versions as inputs to our toolflow. The riscv-curr version of
the Base (resp. Base+A) MCM corresponds to the initial set
of inputs to our toolflow: current Base (resp. Base+A) RISC-
V MCM [55], “Intuitive” compiler mappings of Table 2 (resp.
Table 3), and Base (resp. Base+A) RISC-V implementations
of the Table 7 µSpec models. The riscv-ours version of the
Base (resp. Base+A) MCM corresponds to the final results
of the refinement process of Section 5: refined Base (resp.
Base+A) RISC-V MCM, “Refined” compiler mappings of
Table 2 (resp. Table 3), and refined Base (resp. Base+A)
RISC-V implementations of the Table 7 µSpec models to
accommodate RISC-V MCM changes.

The chart in the bottom right-hand corner of Figure 15
additionally depicts results aggregated across litmus tests in
each litmus test suite. Bug bars correspond to the percentage
of tests that ever produced an illegal outcome for a litmus test
variation of a specified type when executed on any of our mi-
croarchitectural implementations. The Overly Strict display
the percentage of tests that ever produced an Overly Strict
outcome, but never a Bug. Equivalent bars are the percentage
of tests that always produced C11-specified outcomes.

6.1 Litmus Test Suite Evaluation
In Section 2, we discussed MCM features and alluded to
issues that can result when these features are not carefully
taken into account at design time. Through our Section 5 case
study, we found that the Base and Base+A RISC-V MCMs
are prone to pitfalls via these same MCM features. All of
these errors enumerated below are eliminated in our refined
riscv-ours µSpec model, ISA MCM, and compiler mappings,
for both RISC-V Base and Base+A.

Lack of Cumulative Lightweight Fences from Sec-
tion 5.1.1: The µSpec models that are subject to errors as a
result of the RISC-V MCM omitting cumulative lightweight
fences are those with nMCA stores—nWR, nMM, and A9like.
A lack of cumulative lightweight fences in the Base riscv-
curr versions of these nMCA models resulted in 108 illegal
outcomes out of the 243 variants of the WRC litmus test.

Lack of Cumulative Heavyweight Fences from Sec-
tion 5.1.2: Also applicable to the three nMCA µSpec models,



0
50
100
150
200
250

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

riscv-curr riscv-ours riscv-curr riscv-ours riscv-curr riscv-ours riscv-curr riscv-ours

wrc rwc wrc	 rwc

RISC-V	Baseline	(Base) RISC-V	Baseline	+	Atomics	(Base+A)

Te
st
	V
ar
ia
tio

ns

Bugs Overly	Strict Equivalent

μSpec Model:	

Variation:

Litmus	test:	

ISA:

0
15
30
45
60
75
90

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

rM
M
	

rM
M
	

rM
M
	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

riscv-curr riscv-ours riscv-curr riscv-ours riscv-curr riscv-ours riscv-curr riscv-ours

mp	 sb mp sb

RISC-V	Baseline	(Base) RISC-V	Baseline	+	Atomics	(Base+A)

Te
st
	V
ar
ia
tio

ns

Bugs Overly	Strict Equivalent

μSpec Model:	

Variation:	

Litmus	test:	

ISA:

0
100
200
300
400
500
600
700
800

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

riscv-curr riscv-ours riscv-curr riscv-ours

iriw iriw

RISC-V	Baseline	(Base) RISC-V	Baseline	+	Atomics	(Base+A)

Te
st
	V
ar
ia
tio

ns

Bugs Overly	Strict Equivalent

μSpec Model:	

Variation:	

Litmus	test:	

ISA:

0.0%
20.0%
40.0%
60.0%
80.0%
100.0%

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

ris
cv
-c
ur
r

ris
cv
-o
ur
s

Base Base+A Base Base+A Base Base+A Base Base+A Base Base+A

mp sb wrc rwc iriw

Te
st
	V
ar
ia
tio

ns

Percentage	of	Unique	Outcomes	 Aggregated
Across	 μSpec	Models Bugs Overly	Strict Equivalent

Variation:

Litmus	test:	

ISA:

Figure 15. Results of Step 4 of the TriCheck methodology (Figure 6) for the Base and Base+A RISC-V MCMs. riscv-curr
and riscv-ours refer to the current RISC-V MCM [55] and refined version, respectively. Red striped bars are the number of
executions that are forbidden by the C11 HLL MCM, yet observable for the tests in the input set. Black bars are the number of
executions that are permitted by the C11 HLL MCM, yet unobservable for the tests in the input set. Gray bars are tests that
behave exactly as the C11 MCM indicates.

is the omission of cumulative heavyweight fences from the
RISC-V MCM. The result of this can be seen in the Base
riscv-curr versions of the three nMCA microarchitectures
for the RWC and IRIW litmus tests. Each model exhibited 2
illegal outcomes out of the 243 variants of RWC. Out of the
729 variations of IRIW, the nWR, nWW, and A9like models
experienced 4 buggy executions.

Reordering Loads to the Same Address from Sec-
tion 5.1.3: We observed read→read reordering of reads
of the same address on both the Base and Base+A RISC-V
ISAs for the CoRR and CO-RSDWI litmus tests. We do not
include quantitative results for these tests in Figure 15, as
they do not rely on any subtle interplay of instructions and are
straightforwardly observable (yet forbidden by C11) when
same-address loads are implemented with RISC-V relaxed
loads. For the Base and Base+A riscv-curr versions, CoRR
variants produced 18 illegal results out of 81 for the µSpec
models that relax read→read ordering—rMM, nMM, and
A9like. CO-RSDWI variants produced 54 illegal results out
of 243 for the same µSpec models.

Lack of Cumulative Releases from Section 5.2.1: The
lack of cumulative releases in RISC-V again affects only
nMCA implementations—rWR, rMM, and A9like—as dis-
played by the WRC executions for the Base+A riscv-curr
versions of these µSpec models. Out of the 243 WRC vari-
ants, the rWR and rMM variants produce 96 illegal outcomes,
and A9like exhibits 72.

Note that the RWC and IRIW litmus tests are only forbid-
den at the C11 level when SC atomics are involved. Thus,
the non-cumulative behavior of riscv-curr acquires and re-
leases is not buggy for these tests unless SC atomics are used,
resulting in fewer cases being flagged as bugs.

Absence of Roach-Motel Movement for SC Atomics
from Section 5.2.2: The effects of this on overly-constraining
C11 programs can be seen by comparing all Base+A riscv-
curr and riscv-ours variants and noting that the Overly Strict
bars decrease in size from riscv-curr to riscv-ours (or stay
the same in a couple of cases). When they stay the same,
e.g. IRIW, this is because the microarchitectures themselves



are not relaxed enough to exploit the difference between SC
operations that allow roach-motel and those that don’t.

7. Applying TriCheck to Compiler
Evaluation

As discussed in Section 4.3, we evaluated a microarchitecture
very similar in ordering semantics to those allowed by the
ARM Cortex-A9 (specifically, the A9like microarchitecture)
when conducting our RISC-V case study. Two well-known
compiler mappings from C11 to the Power and ARMv7
architectures are the leading-sync mapping [38] and the
trailing-sync mapping [8], both of which were supposedly
proven correct [8]. We initially elected to use the trailing-sync
compiler mapping for our analysis. In doing so, TriCheck
identified two counter-examples to this mapping on the
A9like microarchitecture, thus invalidating the mappings.
This led to our discovery of a loophole [36] in the compilation
proof which had allowed the incorrect mappings to pass
through. We decided instead to use the leading-sync mapping
for our analysis, as reflected in Table 2.

Concurrent work identified a counter-example to the
leading-sync mapping as well [27]. This counter-example
makes use of C11 SC fences. Since we did not evaluate the
mixing of C11 fences and atomic instructions in this work,
we did not observe this bug in our case study. The pres-
ence of counter-examples for both leading and trailing-sync
mappings leaves C11 without a provably-correct mapping
to Power and ARMv7 at present. Ongoing work has pro-
posed a weakening of the C11 MCM specification to fix this
problem [27], but the situation remains in flux. This example
demonstrates TriCheck’s applicability beyond this paper’s
main focus on ISA design.

8. Related Work
In the past decade, researchers have formalized the specifi-
cations of a number of important real-world memory mod-
els. Java, x86-TSO, Power, ARM, C11, and OpenCL have
been formalized operationally [41, 42, 46] and/or axiomati-
cally [2, 6, 34, 53]. Most of these efforts, however, use some
pre-existing document(s) as a starting point, and generally the
refinement is performed according to the designers’ original
intent. In contrast, this work treats the software requirements,
microarchitectural guarantees, and ISA MCM speicifiactions
as design parameters than can be explored and modified.
Verifying HLL Mappings onto Weak ISA MCMs: The
two programming languages that have received the most at-
tention in terms of memory model formalization are C11 and
Java. In a series of work, Batty et al. developed a mathemat-
ically rigorous semantics for C11 concurrency, formalized
using the Isabelle/HOL theorem prover via Lem [6, 9, 39, 40].
As part of this process, they produced a verified compilation
scheme from C11/C++11 onto the x86, ARM, and Power
MCMs [8, 45]. Vafeiadis et al. developed various methods
for proving the correctness of operations performed within a

C11 compiler [53, 54]. Petri et al. developed an operational
model of Java which specifically focused on its mapping onto
x86 and Power [42]. Mappings from HLLs onto other archi-
tectures have also been considered with varying degrees of
formality [48].
Verifying Microarchitectures against ISA MCMs: Prior
work has also enabled flexible verification of hardware with
respect to its ISA-level memory consistency model speci-
fication. Lustig et al. and Manerkar et al. developed a set
of tools for specifying memory ordering behavior at the mi-
croarchitecture level and then comparing it to the ISA speci-
fication [30, 31, 35]. We use these Check tools in this work.
Another Check tool is capable of injecting ordering enforce-
ment mechanisms to restore orderings required by the ISA
but not implemented (or incorrectly implemented) in hard-
ware [32]. Finally, extensive work has developed black-box
testing methodologies using litmus tests [22]. We draw from
these techniques and expand on them in TriCheck.

9. Conclusion
MCM design choices are complicated and involve reason-
ing about the subtle interplay between many diverse features.
Modifications to any layer in the hardware-software stack
may expose inefficiencies or inaccuracies within the specifi-
cation. Full-stack verification with TriCheck is necessary to
ensure that HLL, compiler, ISA, and implementation align
well on MCM requirements. In our RISC-V MCM case study,
we found that one RISC-V-compliant microachitecture al-
lows 144 outcomes forbidden by C11 to be observed out of
1,701 litmus tests examined. We also demonstrated, however,
that the same issues were not present across all RISC-V-
compliant hardware designs. Using TriCheck, ISA designers
can iteratively refine and evaluate ISA specifications in a
microarchitecture-aware manner based on the ISA’s ability to
serve as a target for compiled C11 programs.
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