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Abstract
Modern computer systems include numerous compute ele-
ments, from CPUs to GPUs to accelerators. Harnessing their
full potential requires well-defined, properly-implemented
memory consistency models (MCMs), and low-level system
functionality such as virtual memory and address translation
(AT). Unfortunately, it is difficult to specify and implement
hardware-OS interactions correctly; in the past, many hard-
ware and OS specification mismatches have resulted in im-
plementation bugs in commercial processors.

In an effort to resolve this verification gap, this pa-
per makes the following contributions. First, we present
COATCheck1, an address translation-aware framework for
specifying and statically verifying memory ordering en-
forcement at the microarchitecture and operating system
levels. We develop a domain-specific language for speci-
fying ordering enforcement, for including ordering-related
OS events and hardware micro-operations, and for program-
matically enumerating happens-before graphs. Using a fast
and automated static constraint solver, COATCheck can ef-
ficiently analyze interesting and important memory ordering
scenarios for modern, high-performance, out-of-order pro-
cessors. Second, we show that previous work on Virtual
Address Memory Consistency (VAMC) does not capture
every translation-related ordering scenario of interest, and
that some such cases even fall outside the traditional scope
of consistency. We therefore introduce the term transistency
model to describe the superset of consistency which captures
all translation-aware sets of ordering rules.

∗ The first two authors contributed equally to this paper.
† The work was performed while this author was at Princeton University.
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1. Introduction
Computer systems are becoming increasingly complex, with
multiple processing elements (e.g., multicore CPUs, GPUs,
and other accelerators) running multiple layers of system
software (user code, libraries, operating systems, hypervi-
sors, etc.). These heterogeneous systems frequently enable
inter-element communication by presenting the user with
an abstraction of shared virtual memory, even when the un-
derlying hardware may contain discrete physical memory
blocks [11, 42]. Harnessing these systems’ full potential
requires careful coordination between the hardware and the
OS to ensure that the memory consistency model(s) (MCMs)
and address translation (AT) mechanisms are properly-
implemented. Unfortunately, the ability to rigorously ver-
ify these subsystems and their interactions with each other
remains a vexing problem.

Recent years have seen increased attention being paid to
the need for well-defined memory models and analysis tech-
niques at each layer of the hardware-software stack. Many
architectures and programming languages have recently de-
veloped formal consistency model specifications [10, 13, 30]
and tools to help analyze them [3, 40]. However, most (but
not all [38, 39]) of these models ignore the implications
of virtual-to-physical address translation, such as synonyms
and page permission updates, on memory ordering. Further-
more, these tools cannot verify the underlying implemen-
tations of these models, leaving a verification gap within
which bugs often arise.

A key challenge is that microarchitectural events (i.e.,
those which are not architecturally visible) and OS behavior
can affect memory ordering in ways for which standard (i.e.,
non-translation-aware) memory consistency analysis can be
fundamentally insufficient [38, 39]. Proper implementation
of a memory model requires correctness to be maintained
through library calls, through system calls, and through the
varying and/or unpredictable behavior of the microarchitec-
ture. Events within each of these layers interact with and af-
fect the state of memory, and, crucially, events within these
low-level layers may behave differently from the “normal”
accesses described by the formal memory model. For exam-
ple, on the x86-64 architecture, which implements the rela-



tively strong total store ordering (TSO) memory model [32],
events such as page table accesses may be inherently racy:
page table walks are automatically issued by hardware, can
happen at any time, and are often not ordered with respect to
most fences [16, 20].

No existing notion of memory consistency captures the
strictest possible translation-aware set of orderings. As we
show in this paper, even data-race-free programs [1], se-
quentially consistent machines [23], and systems obeying
sequential consistency for virtual address memory consis-
tency (SC-for-VAMC) [38, 39] can nevertheless be prone
to (perhaps surprising) ordering bugs. These bugs relate to
the checking of metadata which is not directly associated
with the virtual or the physical address being accessed; this
places it outside the scope of memory consistency, includ-
ing VAMC. We therefore use the term memory transistency
model to refer to any set of memory ordering rules which
explicitly takes virtual-to-physical address translation issues
into account, even through the extra layers of indirection
needed above.

To aid in the analysis of transistency models and their
implementations, this work develops techniques and tools—
collectively called COATCheck—for verifying memory or-
dering enforcement in the context of virtual-to-physical ad-
dress translation. COATCheck extends existing tools and
techniques [26, 29] to allow users to reason about sys-
tem calls, interrupts, microcode, and so on. The goal of
COATCheck is to improve the ability to specify and verify
system behaviors at an already bug-prone interface [38, 39]
whose complexity is worsening with heterogeneous paral-
lelism. Our contributions are as follows.

First, we demonstrate a comprehensive yet tractable
methodology for specifying and statically verifying mem-
ory ordering enforcement at the hardware-OS interface.
We develop a Domain-Specific Language (DSL) called
µspec within which each component in a system (e.g., each
pipeline stage, each cache, each TLB) can independently
specify its own contribution to memory ordering using the
languages of first-order logic and µhb graphs [26, 27, 29].
µspec extends the constraint-based approach of previous
work [29] to support modeling of TLB occupancy, page ta-
ble walk microcode, activities that emit memory references
despite not being part of the user-level instruction stream,
system calls for memory allocation (e.g., malloc/mmap),
and interrupts (e.g., inter-processor interrupts to maintain
TLB coherence). The µspec approach allows components
to be swapped in and out without affecting others, thereby
providing a more modular approach to memory ordering
verification.

Second, we develop a fast and general-purpose constraint
solver which automates the analysis of µspec specifications,
thereby allowing interactive exploration of memory order-
ing scenarios more complex than previous tools have han-
dled. We demonstrate the use of COATCheck (the methodol-

Initially: [x]=0, [y]=0

Thread 0 Thread 1
St [x] ← 1 St [y] ← 2

Ld [y] → r1 Ld [x] → r2

Proposed outcome: r1=2, r2=1

(a) Litmus test code
Initially: [x]=0, [y]=0

Thread 0 Thread 1
St PA1←1

St PA2←2

Ld PA1→r2

Ld PA2→r1

Outcome r1=2, r2=1 permitted

(b) A possible execution show-
ing how the proposed outcome
is observable, if x and y point
to different physical addresses.

Initially: [x]=0, [y]=0

Thread 0 Thread 1
St PA1←1

St PA1←2

Ld PA1→r2

Ld PA1→r1

Outcome r1=2,r2=1 forbidden

(c) The execution is forbid-
den if x and y point to to the
same physical address. (Only
one possible interleaving is
shown.)

Figure 1: The litmus test outcome is permitted if TSO is
considered to apply only to virtual addresses or if x and y

are not synonyms, and forbidden otherwise.

ogy and the tool) on several case studies that highlight inter-
esting challenges at the hardware-OS boundary: a sophisti-
cated model of an Intel Sandy Bridge-like processor running
Linux, as well as classes of translation-related bugs recently
identified by processor vendors. The full toolset (the DSL,
models, litmus tests, and analysis tool) is open-source and
publicly available.2

Finally, we use COATCheck to identify cases in which
transistency goes beyond the traditional scope of consis-
tency. We demonstrate cases where even sequentially con-
sistent (or, following recent work, SC for VAMC [38, 39])
code may be buggy due to improper handling of page table
entry status bits for virtual address synonyms. Overall, our
work offers formal, yet practical tools for memory ordering
checking, and it broadens the very scope of memory consis-
tency.

2. Overview
2.1 Background and Motivation
As motivation, consider the litmus test3 in Figure 1a. As
written, x and y appear to be distinct addresses. Under that
assumption, Figure 1b shows that even a strong MCM such
as sequential consistency (SC) [23] considers the proposed
final values to be observable, because an event interleaving
exists to achieve that value outcome. If instead, as in Fig-
ure 1c, x and y are actually synonyms (i.e., both map to the
same physical address), the test is forbidden by SC, because

2 http://github.com/daniellustig/coatcheck.
3 Litmus tests are small programs testing some aspect of a MCM. Each
proposes a particular outcome (i.e., the value returned by each load) and
then specifies/tests whether that outcome is permitted or forbidden by the
MCM’s rules.

http://github.com/daniellustig/coatcheck


if the addresses are the same, no interleaving of the threads
produces the proposed outcome. While simple, this exam-
ple highlights how memory ordering verification is funda-
mentally incomplete unless it explicitly accounts for address
translation when determining expected behaviors and veri-
fying correctness.

Relationship to Past Work: The bulk of prior MCM
work has focused on the high-level programming language
and hardware layers [2, 10, 13, 30, 32, 40]. However, ab-
stractions effective at these levels (e.g., SC-for-DRF [1],
TSO [43]) are often ineffective at the hardware level, as
high-performance data structures and low-level hardware
operations are often inherently weakly ordered and racy.
For example, although x86 processors implement the To-
tal Store Ordering (TSO) MCM, page table walks are TSO-
ordered with respect to neither normal memory accesses nor
mfence instructions (which enforce orderings between all
normal loads and stores) [16, 20]. Likewise, many parallel
data structures bypass software memory models in favor of
higher-performance (but less portable) assembly implemen-
tations that interface more directly with the non-SC hard-
ware memory model [10, 24, 25, 31].

Romanescu et al. were the first to distinguish between
MCMs meant for virtual addresses (VAMC) and those for
physical addresses (PAMC) [38, 39]. They considered hard-
ware to be responsible for enforcing the latter, and a com-
bination of hardware and OS for the former. Accordingly,
traditional hardware models such as TSO would fall under
PAMC, while synonyms, page mapping changes, and side
effects (i.e., page status bits) would be added to form VAMC.
COATCheck provides a rigorous means of specifying and
verifying the interaction between the two models. This pa-
per also goes beyond the VAMC-PAMC distinction to iden-
tify cases in which ordering bugs can be found even when
both VAMC and PAMC are made sequentially consistent.

PipeCheck and CCICheck verify memory ordering en-
forcement through the use of microarchitecture-level happens-
before (µhb) graphs [26, 27, 29]. PipeCheck performs MCM
verification by enumerating a complete family of µhb graphs
for any given litmus test. CCICheck extends PipeCheck to
handle coherence-consistency interface issues. COATCheck
extends both of these by providing a fully-general DSL for
specifying ordering enforcement, and by demonstrating how
PAMC, VAMC, and transistency in general can be analyzed
using µhb graphs.

2.2 The COATCheck Approach
Figure 2 shows layers at which memory ordering issues
might be considered. Our work enables the building and ver-
ification of detailed models for hardware-OS memory order-
ing implications, particularly focusing on layers 3, 4, and
5 in Figure 2. This allows us to analyze memory order-
ing in an execution stream that includes library and kernel
code, as well as microcode-level events such as the hard-
ware page table walks executed on behalf of the program

1. At the highest level: Programmer-written source code is transformed
into compiler-generated low-level code.
2. After dynamic linking with libraries: Compiler-generated user-
level code with user-level OS support (e.g., syscalls).
3. After addition of OS kernel work (e.g., system call handlers,
interrupts): User and kernel level code.
4. After the addition of microcode: Microcode and post-ISA user and
kernel code.
5. After mapping onto a given microarchitecture: Micro-ops (or
low-level instructions) traversing pipeline structures.

Figure 2: In a typical system layering, our approach sup-
ports memory order verification for Levels 3, 4, and 5. OS
code Insertion (Section 3.3) creates Kernel-Level Litmus
Tests that lie at Layer 3. The further insertion of ghost in-
structions (Section 3.4) creates ELTs that lie at Layer 4. Fi-
nally, with designer input via µspec, the constraint solver
and graph enumeration explore microarchitecturally-aware
event orderings at Layer 5.

at TLB misses. Previously, incomplete specifications, incor-
rect implementations, or poor coordination between the lay-
ers could (and did [5, 6, 18, 21]) cause bugs. These include
forbidden multithreaded outcomes becoming observable, le-
gal data disappearing due to incorrect updates of page table
entry dirty bits, processors experiencing deadlock/livelock,
and any number of other undesirable outcomes.

COATCheck overcomes these problems by building mod-
ular models of memory ordering enforcement at the hardware-
OS interface. In particular, each component (a pipeline stage,
a page table walker, an OS mechanism, etc.) can specify its
own independent contribution to memory ordering enforce-
ment. Prior to verification, the independent contributions
of the components which form the system under test are
merged into a single overall specification. The COATCheck
tool then uses this combined specification to generate fami-
lies of µhb graphs to statically verify the overall correctness
of the system.

Figure 3 shows the overall COATCheck toolflow. First,
traditional (i.e., address translation-unaware) litmus tests are
converted into enhanced litmus tests which include all (mi-
cro) code relevant to memory ordering. Second, the en-
hanced litmus test is analyzed according to the rules of the
µspec specification of the orderings enforced at various parts
of the system. This produces a set of constraints describ-
ing the conditions under which the outcome proposed by the
litmus test would be observable. Third, the constraints are
analyzed by the COATCheck constraint solver tool to de-
termine whether any observable execution (in the form of a
µhb graph) can be found. We analyze each step in detail in
the sections that follow.

After describing the overall flow, Section 6 gives the con-
crete example of how a system consisting of Intel Sandy
Bridge-like hardware, a Linux-like OS, and interesting lit-
mus tests as software can be modeled and analyzed using
COATCheck. This is followed with an analysis of the perfor-
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Figure 3: COATCheck flow diagram. Section numbers are listed in the top-right of the appropriate boxes.

mance of the COATCheck constraint solver, using the above
system as a case study.

3. Beyond Traditional Litmus Tests
Litmus tests have become a standard tool in memory model
analysis. This section describes how we derive Enhanced
Litmus Tests (ELTs) which account for address transla-
tion operations, page table walks, remappings, memory-
accessing microcode, and other operations relevant to mem-
ory ordering and other system-level operations that execute
concurrently with, and on behalf of, user-level code.

3.1 Enhanced Litmus Tests: An Overview
ELTs use three key constructs in moving beyond traditional,
user-level litmus tests. First, ELTs describe virtual and phys-
ical addresses as distinct and simultaneous entities. In the
same way that traditional litmus tests propose an outcome
consisting of a set of values returned by the loads in the
program, ELTs likewise propose as part of the outcome the
physical addresses used by each access. In this way, the anal-
ysis of later sections can directly test whether a proposed set
of address translation outcomes is legal.

Second, ELTs incorporate relevant chunks of OS activity,
such as map/remap functions (MRFs) or inter-processor in-
terrupts (IPIs) as used in software TLB coherence [37, 46].
They similarly include events such as the sending of IPIs,
register reads/writes which cause the enabling/disabling of
interrupts, and so on.

Third, ELTs include “ghost instructions” which model
lower-than-ISA operations (e.g., page table walks) executed
by the hardware on behalf of user-level or system-level code,
even if these instructions are not fetched, decoded or issued
as part of the normal ISA-level instruction stream. The com-
bined power of address tracking, ghost instructions and OS
module insertions gives ELTs sufficient expressive power to
test all aspects of memory ordering enforcement as it relates
to address translation.

Figure 4 presents an example flow from user-level litmus
test to ELT. Our example shows the store buffering (sb) lit-
mus test, which will be further discussed in Section 7. The
stated test outcome is forbidden under sequential consis-
tency (because it does not represent any simple interleaving
of the four user-level instructions), but as its name implies, it

is observable under models such as TSO which allow store
buffering/store→load reordering to be visible. We form a
more system-oriented example by inserting an extra system
call to mprotect at the beginning of thread 0 in Figure 4a.

3.2 Litmus Test Expansion Synopses
As Figure 4 shows, each ELT comes about as the result of a
sequence of modification passes. We systematize this trans-
formation in the form of litmus test expansion synopses, or
simply synopses for short. Each synopsis is a “recipe” for
expanding each instruction in an input litmus test into one or
more instructions in an output litmus test. As described be-
low, there is some flexibility in what the recipes look like: the
original instruction may or may not be maintained, and in-
struction expansions may insert new code into other threads
as well. Furthermore, each expanded instruction may be in-
serted either before or after the original instruction. In this
way, synopses serve as succinct representations of behaviors
that we hope might one day become more rigorously and
precisely formalized.

3.3 From User-Level to Kernel-Aware Litmus tests
Incorporating system calls and kernel-level code into a user-
level litmus test requires multiple changes. First, in the in-
voking thread (e.g., Thread 0 in Figure 4a), we must be able
to substitute the system call with a module of memory ref-
erence operations that correctly encapsulate the system call
behavior relevant to memory ordering verification. Figure 4b
continues the example of Figure 4a by expanding the system
call into a set of four instructions on the invoking Thread 0.
The expanded regions are shaded in blue.

It is worth noting that this expansion can affect multiple
threads at once. Because one of the instructions expanded in
Thread 0 triggers an inter-processor interrupt (IPI), we also
add a three instruction interrupt handler to all of the other
threads (in this case, Thread 1a). Notably, since the relative
timing of Thread 0 and Thread 1a has not yet been estab-
lished, it is also impossible (at this point) to determine the
relative ordering of Threads 1a and 1b. For example, while it
is clear that the interrupt handler must happen sometime af-
ter the interrupt is originally triggered, there is little other
synchronization between the threads. Any such orderings
will be filled in later by the µspec specification of IPI be-
havior in the microarchitecture in question.



Initially: [x]=0, [y]=0

Core 0/Thread 0 Core 1/Thread 1a
syscall mprotect [x], r/w

St [x] ← 1 St [y] ← 1

Ld [y] → 0 Ld [x] ← 0

Outcome: Permitted

(a) Original user-level test.
Initially: [x]=0, [y]=0,

VA x → PA a (R/O, acc, !dirty),

VA y → PA b (R/W, acc, dirty),

VA z → PTE for VA x (R/W, acc, dirty)

Core 0 Core 1
User User Int. Hndlr.

Thread 0 Thread 1a Thread 1b
St [z/PTE(x)] ← R/W St [y/b] ← 1 invlpg [x]

invlpg [x] Ld [x/a] → 0 Send ACK

Send IPI iret

Wait for Acks

St [x/a] ← 1

Ld [y/b] → 0

Outcome: Permitted

(b) User+Kernel litmus test. On core 1, threads 1a and 1b will be
interleaved in some fashion, but the interleaving cannot be statically
determined. The “R/W” store value is shorthand to indicate that the
entire PTE is written, but with the R/W bit set.

Initially: [x]=0, [y]=0,

VA x → PA a (R/O, acc, !dirty),

VA y → PA b (R/W, acc, dirty),

VA z → PTE for VA x (R/W, acc, dirty)

VA w → PTE for VA y (R/W, acc, dirty)

Core 0 Core 1
User User Int. Hndlr.

Thread 0 Thread 1a Thread 1b
St [z/PTE(x)] ← R/W St [y/b] ← 1 IPI Recv

invlpg [x] Ld PML4E(x) save state

Send IPI Ld PDPTE(x) disable ints

Wait for IPI Acks Ld PDE(x) invlpg [x]

Ld PML4E(x) Ld PTE(x) Send Ack

Ld PDPTE(x) Ld [x/a] → 0 iret

Ld PDE(x)

Ld PTE(x)→clean

LdAtomic PTE(x)→clean

StAtomic PTE(x)←dirty

St [x/a] ← 1

Ld [y/b] → 0

Outcome: Permitted

(c) Microarchitecture-level litmus test (ELT). However, page table
accesses for [y], accessed bit updates, etc., are not even expanded in
this example; the real situation would potentially grow even larger.

Figure 4: To represent the memory accesses taking place at
the microarchitecture level, we expand user-level litmus tests
into enhanced litmus tests.

OS Synopses: On the invoking core, an OS synopsis
specifies a mapping from each system call into a simple pre-
defined sequence of microops capturing the effects of that
system call on address translation and consistency. When the
system call contains an inter-processor interrupt (IPI), the
OS synopsis also instantiates pre-defined interrupt handler
threads on those cores, again using a sequence of statically-

determined instructions. Each interrupt handler may be ar-
bitrarily interleaved with the other thread(s) assigned to that
core, subject to µspec constraints (Section 4.2).

We do not curently model the complexities of OS deci-
sion making or data structures; our OS synopses currently in-
clude only memory accesses which update the paging struc-
tures and any synchronization used to enforced orderings
with respect to these updates. However, these synopses could
be made more sophisticated as needed; we believe that at-
tempting to formalize the relationship between these OS
synopses and the full OS code would make for interesting
follow-up work.

3.4 Memory-Accessing Microcode: Ghost Instructions
During V-P translation, there are many microcode operations
which are not fetched as ISA-level instructions (either user
or kernel) but which still play a key role in enforcing con-
sistency. These microcode operations are used to support
hardware page table walks, TLB refills, accessed/dirty bit
updates, and so on. We refer to these operations as ghost in-
structions, as they are present but not visible to the user or
to the OS kernel.

The presence and behavior of ghost instructions depends
heavily both on the architecture and on the microarchitec-
ture in question. At an architecture level, operations such
as page table walks may be specified as being enforced en-
tirely by hardware, entirely by software, or anywhere in be-
tween. COATCheck is flexible enough to cover any point
on this spectrum. We break this problem into two parts:
the specification of the instructions (and ghost instructions)
which are emitted to cause ordering to be enforced (this
section), and the specification of the orderings enforced be-
tween these instructions at different points in their execu-
tions (Section 4.2).

Figure 4c depicts an ELT derived from Figure 4b. Darker
red-shaded regions are microcode operations that have been
expanded at this phase; lighter blue regions remain those ex-
panded in the previous step. For this test scenario, thread 0’s
access to [x] requires a page table walk, because the TLB
entry for that virtual address would have been invalidated
by the invlpg instruction. Also, since the initial condition
states that the page containing [x] is clean, hardware would
also mark the page as dirty prior to the write (specified to
occur on x86 using a LOCKed atomic operation [20]). Other
accesses may also take TLB misses and trigger page table
walks themselves, although (for space reasons) the figure
does not show all of them. Finally, the ELT includes hard-
ware operations for receiving the interrupt, saving state, and
disabling nested interrupts via the microcode preamble to
thread 1b. In this example, hardware is responsible for sav-
ing state, but software is responsible for restoring it. This
again highlights the degree of collective responsibility be-
tween hardware and OS for ensuring ordering correctness.

Microarchitecture Synopses: As with the OS synopses,
our microarchitecture synopses currently consist of rela-



fr
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St [x], 1 Ld [x], 0 St [y], 1 Ld [x], 0

Fetch

Decode

Execute

Memory

Writeback

LeaveStoreBuffer

MemoryHierarchy

Figure 5: µhb graph for the test of Fig. 4a, without the
syscall.

tively straightforward pre-defined expansions which insert
page table walk ghost instructions next to each normal in-
struction. Unlikely as it may be, for completeness we per-
form this expansion for every instruction, as each instruction
may cause a TLB miss and hence trigger a page table walk,
and every instruction may update the associated page status
bits. Likewise, the expansions of loads in our current syn-
opses include ghost instructions corresponding to accessing
both clean and dirty pages, as both possibilities must be con-
sidered. The comprehensive enumeration performed by the
µspec models may choose to use all ghost instructions, or
it may choose to ignore optional possibilities which are not
needed (e.g., PT walks not needed during TLB hits) or im-
possible (e.g., a page being clean and dirty simultaneously).

As with the OS synopses, we envision microarchitecture
synopses becoming more sophisticated as needed. Further,
we envision that the notion of such synopses will ultimately
become part of future microarchitectural specifications too.

4. µspec: A µhb Graph-Centric Ordering
Specification Language

4.1 Background: µhb Graphs
Microarchitecture-level happens-before (µhb) graphs cap-
ture consistency model enforcement at the implementation
level [26, 27]. Figure 5 gives an example. Nodes in a µhb
graph represent events corresponding to a particular instruc-
tion (column) at a particular physical location (row). For ex-
ample, a node may represent a particular instruction passing
through a particular pipeline stage. Edges represent happens-
before orderings guaranteed by some property of the mi-
croarchitecture: an instruction flowing through a pipeline, a
FIFO-ordered structure, the passage of a message, and so on.

All edges in a µhb graph are equivalent, regardless of
their label. This allows the transitive closure of two µhb
graphs to itself always be a legal µhb graph, and it implies
that any cycle in a µhb graph indicates that the execution
is infeasible. This places µhb graphs in contrast to some
other existing approaches in which only specific subsets of a
happens-before graph are analyzed for cycles [3].

Axiom "ReadsFrom":

forall microops "r", IsRead r =>

exists microop "w", IsWrite w /\

SamePhysicalAddress w r /\ SameData w r /\

EdgeExists ((w, AccessMemory), (r, AccessMemory), "rf").

Figure 6: µspec syntax example.

4.2 µspec: A DSL for Specifying µhb Graph Orderings
µspec is a domain specific language in which hardware or
software component designers express the ordering relation-
ships enforced by that component. Through the µspec spec-
ification, designers provide a set of µhb graph-focused ax-
ioms which must all be satisfied for a given test to be con-
sidered observable [29]. This axiomatic approach is widely
used in memory model analysis [2, 3, 28, 32], but µspec ex-
tends this down to a lower level of abstraction.
µspec axioms are first order logic (i.e., AND, OR, NOT,

EXISTS, FORALL) statements built on top of instruction-
and µhb graph-related predicates. The instruction-related
predicates are used to constrain an axiom to a relevant subset
of instructions. For example, an axiom that states a property
relating two reads to the same physical address would use
the two predicates IsRead and SamePhysicalAddress.

The core µspec axiom is the predicate EdgeExists (or,
in plural form, EdgesExist). This predicate takes three
arguments: a source µhb node, a destination µhb node, and
a label. The nodes are in turn formed of two components: an
instruction, and a microarchitectural location or event. These
correspond to the column and row of the node in the µhb
graph, respectively. The edge label is purely cosmetic, as all
edges in a µhb graph are equivalent (Section 4.1).

Figure 6 gives an example of the µspec syntax. The
ReadsFrom axiom asserts that for every read r, there must
be some corresponding write w to the same physical address.
Further, this write must match the value returned by the read.
When such a read is found, the axiom specifies that an edge
labeled “rf” should be added to the µhb graph between the
two µhb nodes (w, AccessMemory) and (r, AccessMemory).
If there is more than one candidate for w which satisfies
SamePhysicalAddress and SameData, then each possibil-
ity (and sub-cases derived thereof) will be considered inde-
pendently by the constraint solver (Section 5).

Each axiom in a µspec model specification represents
an independent and ideally localized property of one par-
ticular mechanism. Component models are formed by con-
joining (i.e., logically ANDing) the axioms within a model.
Likewise, system models are built by conjoining the models
of the components forming the system. The overall system
specification therefore consists of a first order logic formula
whose satisfiability determines whether a proposed execu-
tion is feasible on the system being analyzed.

The approach of separating out individual axioms makes
µspec models highly modular: axioms can be added or re-
moved as necessary without affecting any of the other ax-



ioms or components. In other words, this approach allows
microarchitecture-specific axioms to be easily swapped out
for another set while OS- and architecture-level are kept
unchanged, to give just one example. While µspec cannot
(yet) automate the extraction of a specification from Verilog
or HDLs, it does greatly reduce the effort required to ex-
press ordering requirements and expectations, and we hope
to elaborate on this aspect in future work.

5. Constraint Solver and Software
Implementation

As described in Section 4.2, the µspec specification of a sys-
tem produces a first-order logic formula whose satisfiabil-
ity corresponds to the feasibility of a particular execution.
The COATCheck constraint solver accepts this formula and
some litmus test as inputs, and it searches to find any ex-
ecution of that test which satisfies all of the constraints of
the model. If one can be found, then the proposed outcome
is observable. If not, then the proposed outcome is forbid-
den. In PipeCheck, which introduced µhb graphs, the graphs
were generated using naive exhaustive enumeration [26, 27].
However, the PipeCheck approach does not scale to the sizes
and numbers of graphs needed to handle ELTs.

5.1 Constraint Solver Algorithm
The preliminary step in the solving process is to elimi-
nate the quantifiers in the formula. Doing so produces a
quantifier-free propositional logic formula that is more di-
rectly amenable to being solved. Since the domain of each
quantifier is concrete in the context of some particular litmus
test, the quantifiers are removed by simply converting each
forall into a conjuction (AND) over its domain (i.e., cores,
threads, or instructions). Likewise, each exists is converted
into a disjunction (OR).

The solver algorithm itself resembles and is inspired by
the Davis-Putnam-Logemann-Loveland (DPLL) algorithm
widely used in SAT solvers [14]. We apply it to µhb graphs,
making our solver resemble a primitive but effective SMT
solver for the theory of acyclic directed graphs. At a high
level, the solver uses a backtracking approach: given a start-
ing point, it generates a list of subcases of “either-or” edge
additions, and it then recursively descends into each subcase,
abandoning those which cannot satisfy the given conditions
and stopping when it reaches a leaf node (i.e., an acyclic
graph). Although we could have used an off-the-shelf SAT or
SMT solver, our custom solver provided significantly better
debugging ability and status visualization (e.g., of partially-
completed µhb graphs and decision trees) than would have
been possible with a black-box solver. We found this empir-
ically to be very useful during our work.

5.2 Software Toolchain
We implemented the COATCheck methodology into the
complete working toolflow shown in Figure 3. In normal

operation, the tool takes as input a user-level litmus test,
HW/OS synopses (Section 3.1), and µspec models (Sec-
tion 4.2). For low-level debugging, the tool also allows the
direct input of a manually-written ELT (bypassing the syn-
opses). The ELT and component µspec models feed into the
model analyzer, which applies the axioms of the models to
the ELT to generate a tree of µhb graph constraints. The con-
straints are then passed to the constraint solver to determine
if the outcome is feasible.

Our core analysis infrastructure is written in Coq to al-
low for formal verification [44]. However, we have not yet
completed any formal proofs of correctness; this remains an
open problem, and in any case, the specifications of expected
behavior often simply do not yet exist. We therefore leave
this to future work, and we instead extract the Coq code to
OCaml to build COATCheck as a standalone tool.

Because we aim for backwards compatibility with exist-
ing MCM analysis frameworks, we interface our tool with
herd and the litmus format [3]. This allows us to draw
from a large existing body of litmus tests. Although these
tests do not distinguish virtual and physical addresses, they
serve as valuable sanity checks for the basic correctness of a
pipeline model. Furthermore, hardware models from previ-
ous work [26, 27, 38, 39] can be easily adapted into µspec
and our OS models, and hence into COATCheck as well.

6. Detailed Processor+OS Model Case Study
This section presents an in-depth case study of how hard-
ware and software designers might use COATCheck and
µspec to model a high-performance out-of-order processor
and OS, respectively. The resulting µspec model is the one
used for Section 7’s litmus test case studies, and Section 8
performance results.

6.1 Basic Overview
Our case study model has three main parts, two of which are
provided by the hardware designer and one of which is pro-
vided by someone familiar with the OS. The first component
is a µspec model which describes a given processor microar-
chitecture. This model provides a set of µspec axioms rep-
resenting the ordering constraints enforced by the hardware.
In this case study, this hardware component is inspired by
the Intel Sandy Bridge microarchitecture, and was developed
in detail using public documentation [19, 20], information
gleaned from patents [16], and some educated guesses used
to fill in gaps. Many of the low-level details remain propri-
etary, so it cannot be an exact match, but the paper neverthe-
less refers to this as our SandyBridge model. Table 1 gives
an overall enumeration of the µspec axioms in this model.

The second component is a SandyBridge hardware syn-
opsis (Section 3.4) which specifies how litmus tests might
be expanded by hardware when executed on SandyBridge.
These expansions pertain to hardware page table walks or
other hardware-initiated events (i.e., ghost instructions) in-



Axiom Description

Reads Path (Pipeline stage sequence) and µhb
orderings for read instructions

Writes Path/orderings for write instructions
mfence Path/orderings for mfence
invlpg Path/orderings for invlpg

iret Path for iret instruction
RMW Atomicity of LOCKed RMW operations

FetchPO Program Order enforced at Fetch
DispatchPPO Fetch order maintained at Dispatch
CommitPPO Dispatch order maintained at Commit
StBufPPO Commit order maintained at Store Buffer

Write Serialization Per-physical address total order on all writes
reaching AccessCache

SLR Speculative Load Reordering
IPIInsertions IPI handlers embedded within user thread
IPIOrdering Enumeration of all nestings of IPI handlers
IPIReceive Paths for OS code modeling receiving of IPI

IPIRecvAtomicity OS code modeling receving of IPI is atomic

IPIAcks IPI handlers must complete before issuing
thread allowed to proceed

TLBEntries Paths for PT walks and TLB entry µhb nodes
TLBEntriesNoDups No concurrent duplicate TLB entries

Table 1: Axioms for SandyBridge model. Some axioms in-
clude macros which expand to address other orderings not
listed.

serted within the litmus test. The third component is the
Linux OS synopsis (Section 3.3) that specifies code se-
quences for system calls and for interrupt handlers. Our
Linux synopsis is derived from careful inspection of the
Linux source code (and, for the architecture-specific por-
tions, the 64-bit x86 version). Note that there is no µspec
model for the Linux component; this is because the software
specifies the instructions to be executed (i.e., the column
headings in a µhb graph), while the hardware actually exe-
cutes the instructions (i.e., the nodes and edges in the graph).

In general, the µspec model and hardware synopsis rely
on hardware knowledge, and the OS synopsis relies on OS
knowledge, but the three components compose together; no
single designer must be fluent across all components. In
the text that follows, we discuss several important-to-model
aspects of hardware-OS behavior. For each, we describe
how the µspec model, the hardware synopsis and the OS
synopsis work together to reflect the appropriate hardware-
OS behavior.

6.2 Memory Dependency Prediction and
Disambiguation

The first type of functionality we consider is a sophisti-
cated, high-performance store buffer (SB) forwarding mech-
anism. We focus on capturing the key role address transla-
tion plays in the store buffer. If the implementation operated
using only virtual addresses, for example, then it would be
unable to detect virtual address synonyms, leading to prob-
lems such as the one in Figure 7. Placing the TLB on the
critical path would avoid this problem; however, this would

x and y are synonyms
Thread 0

St [x/PA1] ← 1

St [y/PA1] ← 2

Ld [x/PA1] → r1

Proposed outcome: r1=1

Figure 7: Store buffer forwarding implementations must be
able to detect synonyms to ensure that each load receives its
value from the latest store to the same physical address

come with a performance cost. This realistic example reveals
the perhaps-surprising complexity involved in the seemingly
straightforward process of store buffer forwarding. We start
by describing the mechanism, and we then describe its im-
plementation in µspec. Hardware or OS synopses are not
used in modeling this feature, so they are not discussed.

Mechanism: High-performance forwarding in our Sandy-
Bridge model consists of memory dependency prediction
and memory disambiguation [19]. The prediction stage an-
ticipates dynamic same-physical address dependencies be-
tween stores and loads to try to preemptively prevent consis-
tency violations that might arise. The disambiguation stage
later ensures that all predictions were correct. This pairing
ensures that synonyms can be detected while keeping the
TLB off of the forwarding critical path.

The mechanism we model works as follows. All stores
write their virtual address and data into the SB in parallel
with accessing the TLB. The physical address is later written
into the SB as well, once the TLB provides it. Loads, in
parallel with accessing the TLB, write their lower 12 bits
(“index bits”) into a CAM-based load buffer that holds all
loads that have not yet committed. Due to the minimum
4KB page size, these lower 12 bits will always be identical
between virtual and physical addresses.

Initially, each load compares its index bits against the in-
dex bits of all older stores present in the store buffer. If no
index match is found among the filled-in entries, then clearly
no match exists. If an older entry is allocated but not filled in
(because its address was not yet generated), it is predicted to
cause no dependencies. If an index match is found, the load
will then compare high-order bits. If the load’s virtual tag
matches the virtual tag of the store, the store will forward its
value to the load4. If not, the load compares its physical tag
against the store’s physical tag, stalling if either instruction’s
TLB access has not yet returned a translation. If the physical
tags match, the store will forward its data to the load. Oth-
erwise, the load will have determined that no dependency
exists between the load and that particular store.

In addition to the above, our model must also reflect dis-
ambiguation, in which stores determine whether their spec-
ulations were legal. Before each store commits, it checks the
load buffer to see if any younger loads matching the same

4 Homonyms are handled on Linux/x86 by flushing non-global TLB entries
on each context switch.



DefineMacro "StoreBufferForwardPTag":

exists microop "w", (

SameCore w i /\ IsAnyWrite w /\ ProgramOrder w i /\

SameIndex w i /\ ~(SameVirtualTag w i) /\

SamePhysicalTag w i /\ SameData w i /\ EdgesExist [

((w, SB-VTag/Index/Data), (i, LB-SB-IndexCompare),

"SBEntryIndexPresent");

((w, SB-PTag), (i, LB-SB-PTagCompare),

"SBEntryPTagPresent");

((i, SB-LB-DataForward), (w, (0, MemoryHierarchy)),

"BeforeSBEntryLeaves");

((i, LB-SB-IndexCompare), (i, LB-SB-VTagCompare),

"path");

((i, LB-SB-VTagCompare), (i, LB-SB-PTagCompare),

"path");

((i, LB-PTag), (i, LB-SB-PTagCompare), "path");

((i, LB-SB-PTagCompare), (i, SB-LB-DataForward),

"path");

((i, SB-LB-DataForward), (i, WriteBack), "path")] /\

ExpandMacro STBNoOtherMatchesBetweenSrcAndRead).

Figure 8: µspec Macro describing instance of SB-
Forwarding

physical address have speculatively executed before it. If so,
it squashes and replays them.
µspec Axioms: Based on that store buffer mechanism,

Figure 8 shows a µspec model snippet of one piece of the
prediction and disambiguation mechanism; other pieces are
analogous but omitted for space reasons. The figure shows
a µspec snippet for the sub-case in which a load has an
index match, virtual tag miss, and physical tag match with
a previous store.

The first part of the code, ‘exists microop "w"’, will
only evaluate to true if there is at least one microop that
satisfies the enclosed statements. The middle part enforces
orderings via two types of µhb edges: some ensuring that the
write w is still in the store buffer when the load i searches
for it, and some describing the path i itself takes through
the forwarding mechanism. Finally, it expands a macro (not
pictured due to space reasons) checking that the store is in
fact the youngest matching store in the store buffer. The
model accomplishes this by ensuring that for all stores in
between, either the virtual and physical tags do not match
or the indexes of the middle stores are not present (because
they have not yet executed).

Other possibilities exist for memory disambiguation. An
advantage of µspec is that the axioms representing the ap-
proach we describe above can be easily replaced by those
representing other solutions (e.g., load reexecution [15]).

6.3 Memory Mapping/Remapping Functions, System
Calls, and Interrupts

A second component of our Linux+SandyBridge model re-
flects the functionality of system calls and interrupts as they
relate to memory mapping/remapping functions. This sec-
tion describes mechanisms for how these work, particularly
noting which parts are implemented in hardware and OS.
The model also serves as an example of how key hardware-

DefineMacro "EmbeddedIn" t1 t2:

forall microops "i1", OnCore c i1 => OnThread t1 i1 => (

forall microops "i2", OnCore c i2 => OnThread t2 i2 => (

AddEdge ((i1, Commit), (i2, Fetch), "EmbeddedIn") \/

AddEdge ((i2, Commit), (i1, Fetch), "EmbeddedIn"))).

Axiom "IPIOrdering":

forall threads "t1", forall threads "t2",

~(IsMainThread t1) => ~(IsMainThread t2) =>

~(SameThread t1 t2) =>

ExpandMacro EmbeddedIn t1 t2 \/

ExpandMacro EmbeddedIn t2 t1.

Figure 9: Enumerating thread interleavings using µspec. The
user specifies only the constraint that there exists some em-
bedding; the solver later enumerates the possibilities.

OS functionality is reflected in our SandyBridge µspec
model and the hardware and OS synopses.

Mechanism: Although x86 TLB lookups and page table
walks are performed by the hardware, x86 TLB coherence
is OS-managed. To support this, x86 provides the privileged
invlpg instruction, as well as the support for cores to com-
municate via inter-processor interrupts (IPIs). invlpg is a
privileged instruction which serializes the instruction stream
and invalidates the TLB entry containing the mapping cor-
responding to the specified virtual address. As a serializing
instruction, invlpg causes all previous instructions to com-
mit and drains all pending writes in the store buffer to mem-
ory before fetching the following instruction. invlpg also
ensures that the next access to the virtual page invalidated
will be a TLB miss, thus forcing the latest version of the
corresponding page table entry to be brought into the TLB.

Linux Synopsis: Our Linux synopsis expands the system
call mprotect into code snippets which 1) update the PTE
appropriately, 2) invalidate the now-stale TLB entry on the
current core, and 3) send TLB shootdowns to other cores via
IPIs and interrupt handlers. The interrupt handler performs
its own invlpg operation before sending an acknowledg-
ment to the sender and returning from the interrupt.

SandyBridge Synopsis: The SandyBridge synopsis re-
flects ghost instructions added to reflect hardware-initiated
memory references. In this case, the hardware synopsis first
adds a ghost instruction representing the reception of the in-
terrupt. This allows the µspec model to draw µhb edges re-
flecting that operation. Second, it adds a ghost instruction
representing a write to the FLAGS register bit that determines
whether interrupts are enabled, as on x86, after receiving an
interrupt, subsequent interrupts are disabled until re-enabled
by the handler or the OS. Interrupt re-enabling is handled
by the OS code expanding to sequences containing either
iret or cli instructions; both implicitly model writes to
the FLAGS register as well.
µspec Axioms: Figure 9 shows how the orderings be-

tween these events are specified within our SandyBridge
µspec model. This snippet shows a macro EmbeddedIn and
an axiom IPIOrdering that makes use of it. The user sim-



ply specifies the set of possibilities, and the solver (Sec-
tion 5) automatically and efficiently enumerates all ways the
axiom can be satisfied. A separate macro (not shown) adds
pipeline- and store buffer-draining µhb edges representing
the fact that interrupts are precise [19].

6.4 Page Table Walks
Mechanism: On the x86 architecture, the page table walker
is built into the hardware [20]. This means that page table
walk loads are not issued by the user or by the OS; instead,
they are contained entirely within hardware and are invisible
to the user.

SandyBridge Synopsis: Every potential page table walk is
instantiated by the microarchitecture synopsis as a set of
ghost instruction loads of the page table entry. (The TLB
is modeled as described in Section 6.6.)

µspec Axioms: Our model handles these ghost loads as
follows. First, it does not draw Fetch, Dispatch, etc. nodes
in the paths (i.e., columns) for these special loads, as they do
not pass through the pipeline. Second, the axiom never uses
predicates such as SameVirtualTag with them, since page
table walks are done using only physical addresses. Third,
since the loads are not TSO-ordered, they do not search the
load buffer as in Section 6.2. Lastly, it adds exceptions to,
e.g., the mfence axioms to omit µhb edges touching these
instructions. The model does ensure, however, that page
table walks are ordered with respect to invlpg [16].

6.5 Status Bit Updates
Mechanism: When a page table accessed or dirty bit needs
to be updated due to a memory access, our SandyBridge
pipeline waits until the triggering instruction reaches the
head of the reorder buffer. At that point, the processor in-
jects microcode implementing the update into the buffer. It
also must ensure that the update is ordered against younger
instructions to prevent later loads from reading the now-stale
state of the PTE from before the update.

SandyBridge Synopsis: For each store, the hardware syn-
opsis instantiates dirty bit updates as ghost instructions per-
forming a LOCKed RMW operation on the bits in memory.
These instructions are inserted just before the triggering in-
struction. At a low level, we represent the read and the write
of the RMW as separate microops, and atomicity is guaran-
teed by the µspec axioms described below.

µspec Axioms: The ghost instructions in a status bit update
do traverse the Dispatch, Issue, and Commit stages, unlike
the ghost page table walks, as the status bit updates do prop-
agate through most of the pipeline and affect architectural
state. They are not fetched, however. The orderings enforced
for these ghost instructions are modeled in µspec by adding
µhb edges to enforce that 1) all previous accesses must have
committed, reflecting the condition that the triggering in-

i0.0 i2.1i2.0i0.1 i3.0 i3.1i1.0 i1.1
Fetch
Dispatch
Issue
AGU

AccessTLB
TLBEntryCreate
TLBEntryInvalidate
SB-VTag/Index/Data

LB-Index
LB-SB-IndexCompare
LB-SB-VTagCompare

SB-PTag
LB-PTag

LB-SB-PTagCompare
SB-LB-DataForward

AccessCache
CacheLineInvalidated

WriteBack
LBSearch
Commit

LeaveStoreBuffer
MemoryHierarchy

Initially: [x]=0, [y]=0,

VA x → PA a (R/W, acc, dirty),

VA y → PA a (R/W, acc, dirty),

Core 0 Core 1
(i0.0) St [x/a] ← 1 (i2.0) St [y/a] ← 2

(i0.1) Ld PTE(x) (i2.1) Ld PTE(y)

(i1.0) Ld [y/a]→ r1 (i3.0) Ld [x/a] → r2

(i1.1) Ld PTE(y) (i3.1) Ld PTE(x)

Outcome: Forbidden; r1 = 2, r2 = 1

Figure 10: Litmus test n5. Cycle shown with thicker edges.

struction be at the head of the ROB, and 2) each update has
LOCK semantics (i.e., mfence semantics plus atomicity).

6.6 Modeling TLB Occupancy
µspec Axioms: To model TLB occupancy in µhb graphs,
we add two special new nodes to the paths of page table
walk and status bit update ghost instructions. For page table
walks and status bit updates, after the last memory access of
the walk completes, the insertion of the entry into the TLB
corresponds to a TLB entry creation event. Some time later,
there is a TLB entry invalidation event that takes place for
the same entry. Note that this invalidation, in general, occurs
long after the page table walk has completed. This approach,
which resembles the value-in-cache-line (ViCL) mechanism
developed previously [29], tracks the ordering of TLB state
changes and applies equally well to microarchitectural vari-
ants such as allowing in-place updating of TLB status bits.

We then add a constraint stating that each instruction must
read from a TLB entry which exists and which contains
matching data (translation and status). More precisely, for
a given instruction i accessing virtual address v and physical
address p, this means that there must exist a ghost instruction
g such that the data returned (for walks) or written (for
updates) by g is a PTE mapping the tag of v to the tag
of p. The relevant model axiom also checks for status and
permission bits in the same way. Once the entry is found,



i11.0 i12.0i9.0 i10.0 i15.0i3.0i1.0i0.1 i6.1i5.0i0.0 i14.0i4.0i2.0 i6.0 i8.0i7.0i2.1 i8.1 i13.0
Fetch
Dispatch
Issue
AGU

AccessTLB
TLBEntryCreate
TLBEntryInvlidate
SB-VTag/Index/Data

LB-Index
LB-SB-IndexCompare
LB-SB-VTagCompare

SB-PTag
LB-PTag

LB-SB-PTagCompare
SB-LB-DataForward

AccessCache
CacheLineInvalidated

WriteBack
LBSearch
Commit

LeaveStoreBuffer
MemoryHierarchy

Figure 11: Cyclic graph illustrating one possible ordering for litmus test ipi8 [38, 39]. Because the graph is cyclic (highlighted
with thicker edges), this outcome is not observable in this case. In this case, the cycle was found before the PTEs for y were
even enumerated. For this test, all executions lead to cyclic graphs, and hence the outcome is not observable, as expected.

the axiom adds two µhb edges representing that 1) the TLB
entry must be created before the instruction can access it, and
2) the TLB entry must be accessed before it is invalidated.

Note that each page table walk may be but need not
be associated with a particular instruction. A TLB prefetch
could trigger a page table walk at any point in an execution,
and so there may be “floating” walks. The TLB occupancy
model operates in exactly the same way in both cases.

7. Case Study Litmus Tests
In this section, we study three interesting test cases in the
context of the system modeled in Section 6.

7.1 Dependence Checks and Store Buffer Forwarding
As described in Section 2, n5 synonym tests whether the
store buffer forwarding mechanism takes physical addresses
into account. If either core’s store buffer does not realize
that the two accesses from that core are synonyms, either
load may be allowed to bypass the store before it, leading to
an illegal outcome. Figure 10 shows one of the µhb graphs
by which COATCheck verifies that such an (erroneous) out-
come is impossible on our SandyBridge model5.

The particular execution of Figure 10 shows the scenario
in which the processor speculates that the store and load
access different addresses and hence (under TSO rules) may
be reordered. As in previous litmus tests, the red shading
denotes hardware microcode operations (PT walks) executed
on behalf of the user-level code. The columns of the µhb

5 In reality, the solver would have stopped searching as soon as it detected
a cycle, and it may not have filled in any still-incomplete portions of the
graph. However, the complete graph is drawn here for clarity

graph are annotated with instruction labels (user-level or
microcode) corresponding to those in the litmus test.

When the load (i3.0) executes, it finds that the store buffer
contains no previous entries with the same index (because
in this scenario, the store (i2.0) has not yet issued). This
leads to a happens-before edge (shown in thick blue in the
figure) between the LB-SB-IndexCompare stage of (i3.0)
and the SB-VTag/Index/Data stage of (i2.0). However,
when the store (i2.0) does eventually execute, the condition
under which it would not squash the speculatively-executed
load is if the load buffer has no entries matching the same
index. This could occur only if the load had not yet entered
the load buffer. This situation would cause there to be a
happens-before edge (also shown in thick blue) from the
LBSearch stage of the (i2.0) store back to the LB-Index

stage of the load (i3.0), thereby completing a happens-before
cycle indicating that the scenario cannot occur in practice.

7.2 Page Remappings and TLB Shootdowns
Figure 11 shows the µhb graph for the Figure 12 scenario
involving address remappings and TLB shootdowns. This
scenario is derived from previous work [38, 39]; however,
we fill in some underspecified page mappings and initial
conditions and adapt it to x86-TSO. The original test also
considered two outcomes, one of which was observable and
the other of which was forbidden. Here, we split this into two
tests; we treat the permitted variant as a separate test and a
sanity check that the legal outcome remains observable.

At a high level, thread 0 changes the mapping for x (i0.0),
triggers a TLB shootdown (i2.0), and sends a message to
thread 1 (i4.0). Thread 1 receives the message (i7.0) and
writes to x (i8.0), whose mapping was just modified. Cor-



Initially: [x]=0, VA x → PA a (R/W, acc, dirty),

(other mappings omitted for space reasons)

Core 0 Core 1
Thread 0 Thread 1a

(i0.0)
St [z/PTE(x)] ← (i7.0) Ld [y/c] → 2

(VA x → PA b) (i8.0) St [x/a] ← 3

(i0.1) Ld PTE(z) (i8.1) Ld PTE(x) → TLB

(i1.0) invlpg [x] (i9.0) St [y/c] ← 4

(i2.0) St [w/APIC] ← mrf Thread 1b
(i2.1) Ld PTE(w)→ TLB (i10.0) Ld [w/APIC] → mrf

(i3.0) Ld [v/d] → ack (i11.0) Ld EFLAGS → (IF)

(i4.0) St [y/c] ← 2 (i12.0) St EFLAGS ← (!IF)

(i5.0) Ld [y/c] ← 4 (i13.0) invlpg

(i6.0) Ld [x/b] ← 1 (i14.0) St [v/d] ← ack

(i6.1) Ld PTE(x)→ TLB (i15.0) iret

Outcome: Forbidden

Figure 12: Code for litmus test ipi8

rectness dictates that this write use the new rather than the
old mapping; however, this particular test has the load using
the old, stale translation in an effort to have COATCheck
verify that such a situation is unobservable. Thread 1 (i9.0)
sends a message back to thread 0 (via i5.0), which checks
(i6.0) that the value at x (according to the new mapping) was
not overwritten by the thread 1 store (i8.0) (as it used the old
mapping). These orderings (plus the remaining low-level de-
tails) cause COATCheck to find µhb cycles in all cases.

This graph combines many COATCheck features: IPIs
and their handlers, microcode which does not pass through
the entire pipeline, orderings enforced (or not) by fences on
different types of orderings, and so on. The scale and com-
plexity of these analyses emphasizes the need for tools like
COATCheck to automate the enumeration of such graphs
and identify the cycle (thicker highlighted lines) to demon-
strate non-observable outcomes.

7.3 OS Responsibility for Synonym Tracking
A third case study discusses maintaining coherence among
the status bits in a synonym set. Our SandyBridge hardware
does not guarantee that dirty bit update ghost instructions
will also update all synonym pages [20]; the OS is responsi-
ble for identifying and updating dirty bits for any synonym
PT entries. This can lead to a scenario in which data may be
lost if this coordination is not implemented correctly.

Suppose x and y are synonyms mapped to PA a whose
PTEs are both marked as clean. When a store is done to x,
hardware will mark its PTE as dirty. Suppose the OS intends
to swap out the physical page holding PA a and hence needs
to check if the page is dirty. If it does so by only checking
the PTE for y (and not checking the PTE for its synonym
x), then a naive OS may incorrectly think the physical page
is clean. We have implemented the model for this scenario
(µhb graph not shown due to space reasons) and while the
analysis accounts for all known happens-before orderings,
an acyclic µhb graph can be found, indicating the event may
be observable.

Fixing this case requires that at page eviction time, a less-
naive OS such as Linux checks whether PTEs for all mem-
bers of a synonym set are marked clean. The ELT would
therefore contain an extra load of PTE(x) and a proposed
outcome indicating that this load returned a clean PTE.
COATCheck would then detect a violation of the Sandy-
Bridge Reads axiom, which requires that each load return
the value of the latest store to that physical address (since
the dirty bit update would be ordered before the load), and
conclude that the bad outcome is no longer observable.

This example highlights the fact that memory transistency
models are broader in scope than memory consistency mod-
els, including SC-for-VAMC [38, 39]. Note that in the ex-
ample, the bug may be observable even when there is no
reordering of any kind taking place. In other words, the bug
is observable even on a sequentially consistent system. Fur-
thermore, since the two non-ghost instructions access differ-
ent virtual and physical addresses, and the status bit updates
target a different PTE than the non-ghost load uses, the nec-
essary ordering requirement (i.e., to check the state of the
synonym pages) is also outside the scope of VAMC. Hence,
there may be a translation-related memory ordering bug even
on a SC-for-VAMC system. COATCheck is the first MCM
analysis framework which can capture and reason about this
additional level of indirection, and it can do so regardless of
which layer of Figure 2 is used to solve it.

8. Automated Verification Software
8.1 Test Characteristics
We have performance tested COATCheck on a wide-ranging
set of 118 litmus tests. We include a number of tests from
Intel and AMD manuals and other prior work to sanity
check that our SandyBridge model (Section 6) behaves as
expected [7, 17, 32, 45].

Another category of litmus tests are modifications of the
“standard” tests above to directly test address translation and
OS interface issues. We either derived these from previous
work [38, 39] or custom wrote them to test new functional-
ity or scenarios. In some cases these originate as user-level
codes and follow the full transformation path shown in Fig-
ure 3. In a few cases, we wrote the tests directly as ELTs
to expediently achieve the desired test scenario. In general,
these litmus tests lead to larger graphs, because they employ
more of the ghost instructions and system call modules that
lead to test size growth en route to an ELT.

Lastly, we also include the case studies of Section 7,
plus numerous variants thereof. In all, this gives us a wide-
ranging suite of tests on which we perform our analysis.

8.2 Performance Results
Figure 13 shows the full runtimes for our COATCheck im-
plementation. Performance measurements were taken on a
server with a 3.2GHz Intel Xeon E5-2667 v3 CPU. The
runtimes shown in this graph are for the path from ELT



 0.001
 0.01
 0.1

 1
 10

 100

m
rf1

rfin
itia

l
ip

i2
iw

p
2

8
b

a
p

ic
p

tw
a

lk
2

rf m
p

s
a

fe
0

3
6

s
a

fe
0

3
3

a
m

d
5

p
tw

a
lk

3
d

irty
b

it
s

a
fe

0
2

2
rfi0

0
7

rfi0
0

1
rfi0

0
8

m
p

+
s
ta

le
ld

m
p

s
a

fe
0

1
0

s
a

fe
0

2
9

lb s
a

fe
0

2
8

m
p

+
fe

n
c
e

s
rfi0

0
4

s
a

fe
0

0
5

rw
c

-fe
n

c
e

d
rfi0

0
2

in
te

lb
u

g
s

a
fe

0
0

2
s

a
fe

0
1

8
s

a
fe

0
2

6
s

a
fe

0
3

5
rfi0

1
4

s
a

fe
0

0
6

s
b

s
a

fe
0

2
3

s
a

fe
0

2
5

rfi0
0

6
rfi0

1
6

rfi0
1

8
s

b
s

a
fe

0
2

7
w

rc
s

a
fe

0
3

1
s

a
fe

0
2

4
p

o
d

w
r0

0
0

s
a

fe
0

2
1

s
a

fe
0

0
4

s
a

fe
0

3
2

s
a

fe
0

3
4

iriw
s

a
fe

0
3

7
s

a
fe

0
1

7
te

s
ta

n
d

s
e

t
s

a
fe

0
3

0
te

s
ta

n
d

s
e

t2
s

a
fe

0
0

3
s

a
fe

0
2

0
s

a
fe

0
1

3
rfi0

0
0

n
5

s
a

fe
0

1
4

s
a

fe
0

0
9

n
4

s
a

fe
0

0
7

s
a

fe
0

1
2

d
irty

b
it5

iw
p

2
8
a

s
a

fe
0

1
5

ip
io

rd
e

rin
g

rw
c

-u
n

f
s

a
fe

0
0

0
ip

i4
s

a
fe

0
0

1
n

5
s

y
n

o
n

y
m

s
a

fe
0

0
8

p
o

d
w

r0
0

1
s

b
s

y
n

p
e

rm
it

s
a

fe
0

1
9

s
a

fe
0

1
1

a
m

d
1

0
n

8
s

a
fe

0
1

6
te

s
ta

n
d

s
e

t2
s

s
l

iw
p

2
3
b

n
5

rfi0
1

2
n

3
n

6
rfi0

1
7

n
7

rfi0
0

9
rfi0

0
3

rfi0
1

5
p

tw
a

lk
iw

p
2

7
iw

p
2

4
ip

i1
rfi0

1
1

rfi0
0

5
rfi0

1
3

rfi0
1

0
a

m
d

3
c

o
-m

p
d

irty
b

it2
n

1
ip

i3
n

2
ip

i5
ip

i8
ip

i6
c

o
-iriw

ip
ia

c
k

ip
i7

d
irty

b
it4

ip
ia

c
k

2

R
u

n
ti

m
e
 (

s
)

Figure 13: Execution times for full litmus test suite, sorted from smallest to largest run time.

through the constraint solver of Section 5. Recall that a
cyclic µhb graph means that the event cannot be observed,
and an acyclic µhb graph means that it is possible to observe.
Therefore, when performing cycle checks, the cycle-checker
can stop its analysis for a given graph as soon as a single
cycle has been found in it. Likewise, when performing cy-
cle checks for a litmus test intended to be forbidden, one can
stop the checking for the whole litmus test as soon as a single
acyclic graph has been found; one acyclic graph indicates an
outcome intended to be forbidden might be observable.

Figure 13 shows the runtimes of the tests, sorted in in-
creasing order. All 118 tests complete in less than 100 sec-
onds, and many are even faster. All tests taking more than
30 seconds were created for this paper to test address trans-
lation, IPIs, TLB behavior, and so on. Although these µhb
graphs are the largest for which such enumerate-and-check
approaches have been used—they often an order of magni-
tude larger than those from the original PipeCheck work—
our runtimes are similar to or less than those of PipeCheck.
This shows that even though µspec is more general than pre-
vious work on µhb graphs [26, 27], the COATCheck con-
straint solver algorithm and its implementation are orders
of magnitude more efficient. This allows COATCheck to be
suitable even for interactive verification, thereby dramati-
cally improving ease of use and debugging in practice.

9. Related Work
Computer architects and verification experts have long stud-
ied MCMs and in recent years researchers have made signif-
icant progress in formalizing MCM specifications and anal-
ysis [3, 13, 23, 28, 30, 32, 40]. These efforts have clearly
demonstrated that 1) there is a need for rigor when analyz-
ing memory models, 2) both informal and formal hardware
and software models are highly prone to bugs [4, 36], and
3) it can take years to develop models which are sound with
respect to hardware, sound with respect to the intention of
the designers, and usable by programmers [8–10].

While these contributions have shed light on how to cor-
rectly design high-performance shared memory systems,
they do not distinguish virtual and physical addresses and
do not adequately cover hardware-OS interactions. As such,
researchers have only recently focused on the relationship
between MCMs and address translation [38, 39]. While our
efforts are partly inspired by their observations, their virtual
address memory models do not as comprehensively span

system layers as ours do. For example, the more abstract
VAMC [38, 39] does not reason about the interactions of
OS activities like system calls and interrupts, microarchitec-
tural activities like microcode injection, and low-level details
like hardware page table walks. Instead, COATCheck for-
malizes a methodology to understand their interactions, and
to verify that their relationship with MCMs actually meets
specifications. In fact, these low-level details are essential,
not just to design correct systems in the face of increasing
system complexity (e.g., with heterogeneous systems and
unified address spaces [34, 35]), but also to ensure that vari-
ous recent TLB proposals on optimizations like prefetching
[12, 41], coalescing [33], range TLBs [22], and TLB shoot-
downs [37, 46] operate correctly.

10. Conclusions
Memory consistency models have long been difficult to de-
fine, implement, and analyze. The need to properly han-
dle hardware-OS interface issues such as address transla-
tion only adds new complexity. This paper provides meth-
ods and a full, efficient toolflow for automatically specify-
ing and verifying memory ordering at the hardware-OS in-
terface. Through many detailed case studies, our work also
pushes beyond existing definitions of “consistency” to the
more general notion of “transistency”, because the order-
ing requirements in some of our tests cannot be expressed
by consistency models alone. The COATCheck toolset fa-
cilitates further exploration of hardware-OS memory order-
ing issues, both in support of system verification itself, and
also in the context of forward-looking definitions and explo-
rations of consistency and transistency.
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