
ArMOR: Defending Against Memory Consistency Model
Mismatches in Heterogeneous Architectures

Daniel Lustig Caroline Trippel Michael Pellauer∗ Margaret Martonosi
Princeton University ∗NVIDIA Research1

{dlustig,ctrippel,mrm}@princeton.edu mpellauer@nvidia.com

Abstract
Architectural heterogeneity is increasing: numerous prod-

ucts and studies have proven the benefits of combining cores
and accelerators with varying ISAs into a single system. How-
ever, an underappreciated barrier to unlocking the full poten-
tial of heterogeneity is the need to specify and to reconcile
differences in memory consistency models across layers of the
hardware-software stack and among on-chip components.

This paper presents ArMOR, a framework for specifying,
comparing, and translating between memory consistency mod-
els. ArMOR defines MOSTs, an architecture-independent
and precise format for specifying the semantics of memory
ordering requirements such as preserved program order or
explicit fences. MOSTs allow any two consistency models to
be directly and algorithmically compared, and they help avoid
many of the pitfalls of traditional consistency model analysis.
As a case study, we use ArMOR to automatically generate
translation modules called shims that dynamically translate
code compiled for one memory model to execute on hardware
implementing a different model.

1. Introduction
Recent computing trends demonstrate a dramatic shift away
from homogeneous multicores and towards increasing microar-
chitectural and architectural heterogeneity [18, 24, 48, 56, 63].
The GPGPU paradigm is one popular example, but the degree
of heterogeneity used in practice has quickly moved beyond
just GPUs. A current mobile system-on-chip (SoC) contains
as many as five or six instruction sets among its CPUs, GPUs,
DSPs, and accelerators [49]. This ISA diversity extends be-
yond the choice of opcodes; a modern SoC may likewise

1Work performed while with VSSAD Group, Intel Corporation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ISCA’15, June 13-17, 2015, Portland, OR USA
c©2015 ACM. ISBN 978-1-4503-3402-0/15/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2749469.2750378

contain as many as five or six hardware memory consistency
models, and each hardware component may serve as a target
for any number of software memory models.

Memory model heterogeneity presents a number of chal-
lenges: how to compile from a given software model onto a
given hardware model, how to design memory model-aware
intermediate representations (e.g., LLVM IR, NVIDIA PTX),
how to dynamically migrate code from one ISA to another,
and so on. Due to the complexity of even properly defining
memory models such as those used by C/C++11, Java, ARM,
or Power, and due to the incompatible manner in which mem-
ory models are often defined, any solution to one of the above
problems (e.g., any particular compiler) can only be built in
a reliably correct manner through the use of formal analy-
sis [3, 12, 15, 34, 40, 41, 51]. Informal analyses are prone to
being either overconstrained or simply incorrect.

We present ARchitecture-independent Memory Ordering
Requirements (ArMOR), a framework for specifying, rea-
soning about, and translating between memory consistency
models. ArMOR defines memory ordering requirements
(MORs) (fences, dependencies, or any other ordering enforce-
ment mechanisms) in a self-contained, complete, and pre-
cise format known as a memory ordering specification table
(MOST). MOSTs resemble standard reordering tables which
indicate, e.g., whether load→load, load→store, store→load,
and store→store orderings need to be maintained. The key
contribution of MOSTs is that they also directly encode subtle
details such as store multiple-copy atomicity, fence cumula-
tivity, and so on. This added precision makes MOST-based
analysis less prone to the types of under- or overconstraints
that can result from relying on less systematic techniques.

As a case study which demonstrates the precision and flex-
ibility of ArMOR, we use MOSTs to automatically derive
self-contained translation modules called shims which dynam-
ically adapt code compiled for one memory model to execute
on hardware implementing another, without recompilation or
offline code analysis. Shims operate by dynamically injecting
fences or other enforcement mechanisms as needed into a code
stream. Other use cases could include removing redundant
fences to optimize performance or using programmable shims
as a means of allowing memory-accessing IP blocks to be built
independently of the reordering properties of the underlying
infrastructure (e.g., the network-on-chip). In the future, we
envision shims being used in JIT compilers [32, 44], dynamic

Loads Stores
Loads X X
Stores — X
Stores are multiple-copy atomic

TSO PPO

Core 0 Core 1 Core 2 Core 3
mov [x], 1 mov rax, [x] mov rcx, [y] mov [y], 1

mov rbx, [y] mov rdx, [x]
Outcome rax=1, rbx=0, rcx=1, rdx=0 forbidden

iriw litmus test on x86

PO Ld PO St
PO Ld X X
PO St — XM
AC St XM XM

Partial TSO PPO MOST

Loads Stores
Loads X X
Stores — X

A- and B-cumulative
Power lwsync

Core 0 Core 1 Core 2 Core 3
stw [x], 1 lwz r1, [x] lwz r3, [y] stw [y], 1

lwsync lwsync
lwz r2, [y] lwz r4, [x]

Outcome r1=1, r2=0, r3=1, r4=0 observable
iriw+lwsyncs litmus test on Power

PO Ld PO St
PO Ld X X
PO St — XN
AC St — XN

Partial lwsync MOST

(a) Traditional reordering tables for
TSO PPO and Power lwsync.
The two appear deceivingly similar.

(b) The iriw litmus test on x86-TSO and Power. The out-
come is observable on Power but not x86-TSO, indicating that
the orderings enforced by TSO PPO and by lwsync differ.

(c) MOSTs add enough precision that
the differences become clear. See Sec-
tion 3 for details.

Figure 1: When specification formats differ, it can be unclear whether ordering requirements of different architectures are equiv-
alent. In this example, the tables match, leading even experts prone to the pitfall of assuming TSO PPO and Power lwsync are
equal [58]. However, multiple-copy atomicity and cumulativity differ in subtle but important ways (as seen with iriw).

memory_
order_
relaxed

memory_
order_
release

memory_
order_
seq_cst

x86 mov mov xchg
Power st lwsync; st sync; st

ARMv7 st dmb; st dmb; st
ARMv8 str stl stl
Itanium st.rel st.rel st.rel; mf

Table 1: Mapping C11 low-level atomics with different ordering
specifications onto hardware. The software constructs map
onto different architectures in different ways [53].

binary translators [20, 65], dynamic code optimizers [43], and
updates to reprogrammable microcode [30], with the latter
used to fix implementation bugs [4].

When memory models are sufficiently compatible, we
demonstrate that the performance overhead of implementing
optimized ArMOR translation in hardware can be as low as
10-77%. Overall, our experiences with ArMOR and transla-
tion can inspire the designs of future ISAs to be truly portable
across hardware memory models, and they can inspire future
architectures in how to define and implement a set of memory
ordering primitives that serve as a suitable back-end.

The rest of this paper is arranged as follows. Section 2 be-
gins with a motivating example. Section 3 describes ArMOR’s
specification syntax, and Section 4 describes how to manipu-
late and compare MOSTs. Section 5 uses MOSTs to derive
inter-MCM translation shims. Our experimental methodology
and performance analysis results are given in Sections 6 and 7.
Section 8 describes related work, and Section 9 concludes.

2. Motivating Example

Although many programmers write parallel code under the
assumption of sequential consistency (SC), few software or
hardware models today directly implement SC due to its per-
formance cost. As a result, application programmers or library
writers must explicitly specify additional consistency-related

synchronization points, whether at coarse grain (e.g., function
call or GPGPU kernel boundaries), medium grain (e.g., mutex
operations), or fine grain (e.g., C11 low-level atomics or inline
assembly). One key challenge in each case is determining how
to map a given software synchronization primitive onto a suf-
ficiently strong hardware primitive in the target architecture.

Table 1 shows how three flavors of C11 atomic store order-
ings map onto different architectures in very different ways.
The corresponding table for loads is even more diverse, en-
forcing orderings through the use of features such as explicit
dummy dependencies. Such decisions are sometimes shielded
from application programmers writing in high-level languages,
but they represent very real complexity for library and com-
piler writers. Unfortunately, the current most reliable method
for determining such mappings requires the construction of
complicated formal models and dense mathematical correct-
ness proofs which may take years to complete [12]. In the
meantime, programmers are forced to rely on bug-prone intu-
itive analysis to select primitives.

Figure 1 highlights some of what makes consistency models
complicated. Figure 1a depicts a commonly-used manner of
describing the total store ordering (TSO) consistency model
used by SPARC and x86. In particular, this figure depicts
preserved program order (PPO)—the set of orderings always
enforced by default on a given architecture. The table in
Figure 1a specifies whether an access of one type (the row
heading) may be reordered with a subsequent access of an-
other type (the column heading). Under TSO, stores may be
reordered with later loads, but all other orderings are required.
This figure also shows how lwsync, a fence on the Power
architecture, can be defined in a similar way for orderings
between operations before and after the fence.

The rest of Figure 1 describes how ordering specifications
which appear similar on the surface may nevertheless differ in
very subtle ways that make intuitive reasoning difficult. For
example, consider the problem of mapping x86-TSO code

onto the Power architecture [52]. Memory accesses on Power
are reordered liberally by default; orderings on Power are only
enforced through inter-instruction dependencies or explicit
fences. Given the commonly-used tables in Figure 1a, it may
appear that insertion of lwsync between every pair of accesses
should be sufficient to restore all of the orderings required by
TSO. However, this appearance is deceiving, as the two are in
fact not equivalent.

The difference in strength between the default orderings of
TSO and the orderings enforced by lwsync can be demon-
strated explicitly by a litmus test called iriw (independent
reads of independent writes), shown in Figure 1b. In particular,
although TSO enforces orderings between the Core 0 store to
[x] and the Core 1 load of [y] and between the Core 3 store
to [y] and the Core 2 load of [x], lwsync does not.

ArMOR avoids the pitfall of Figure 1a by improving the
precision of the reordering tables themselves. We call these
enhanced ordering tables MOSTs, or memory ordering spec-
ification tables. A partial example is shown in Figure 1c.
Each cell in a MOST lists not just an ordering, but also the
strength of the ordering (i.e., whether it is single-copy atomic,
multiple-copy atomic, or neither). New rows and columns are
introduced to directly address ordering enforced with respect
to remote cores (as required by iriw above). The details of
these new features are elaborated in Section 3. The highlight,
however, is that by comparing cell-to-cell, the MOSTs clearly
show that TSO PPO enforces more orderings than lwsync.

The ArMOR approach has numerous potential uses moving
forward. As one example, we would use ArMOR directly in
compiler backends in an effort to solve compilation problems
such as the above. However, we leave the analysis of software
constructs as future work. In this paper, we instead focus on
the related problem of translating directly from one hardware
model to another through the use of a shim. This case study
fits within the hardware heterogeneity focus of the current
paper, and it complements recent cross-ISA migration studies
which focused on microarchitectural differences and memory
layouts rather than consistency models [20, 65].

3. Memory Ordering Specification Tables
Memory ordering specification tables (MOSTs) describe the
reordering behavior of memory consistency models at a pre-
cise and detailed level sufficient to support algorithmic analy-
sis and automated comparisons and translation. Just as with
traditional reordering tables, each cell in a MOST specifies
whether instructions of the type in the row heading must main-
tain their ordering with subsequent instructions of the type in
the column heading. Traditional reordering tables are most
often used to define preserved program order, the set of or-
derings which are enforced by default. In contrast, we use
MOSTs to define not just preserved program order, but also
fences or any other type of ordering enforcement mechanism.

As two running examples, we will derive the MOSTs for
TSO preserved program order and for Power lwsync step by

Core 0 Core 1 Core 2
st [x], 1 ld r1, [x] ld r2, [y]

fence fence
st [y], r1 ld r3, [x]

Outcome r1=1, r2=1, r3=0:
Forbidden if stores are single-or multiple-copy atomic

Allowed if stores are non-multiple-copy-atomic

Figure 2: The wrc litmus test with non-cumulative fences.

Abb. Description
XS Single-copy atomic
XM Multiple-copy atomic
XN Non-atomic
— Unordered

(a) Store→store

Abb. Description

X Ordered

XL Locally ordered
— Unordered
(b) Store→load

Abb. Descrip.

X Ordered

— Unordered
(c) Other

Figure 3: MOST strength levels used in this paper.

step. Both were partially shown earlier in Figure 1c. The
complete MOSTs will be given at the end of this section once
all of the necessary notation and details have been presented.

3.1. Store Atomicity

The first imprecision of traditional reordering tables is the fact
that they do not address how orderings may have different
strengths. In particular, stores may in general perform with
respect to (i.e., become visible to) different cores in a system
at different times. Single-copy atomic stores must become vis-
ible to all cores in the system at a single time [9]. Single-copy
atomicity is uncommon, as it forbids even forwarding from a
private local store buffer. Multiple-copy atomic stores must
become visible to all cores besides the issuing core simulta-
neously. In other words, a multiple-copy atomic store cannot
ever be visible to some but not all remote cores. TSO (used by
SPARC and x86) falls into this category. Non-multiple-copy-
atomic stores may become visible with respect to remote cores
in any order and in any number of steps. Power and ARM fall
into this category.

The effect of store atomicity (or a lack thereof) is commonly
depicted by the write-to-read causality litmus test (wrc) of
Figure 2. This test works as follows. If the core 1 load reads
the value written by the core 0 store and then forwards it along
to core 2, must core 2 have also seen the effect of the core
0 store? If the store from core 0 is multiple- or single-copy
atomic, then core 2 must see the core 0 store before it sees the
core 1 store. However, if the store from core 0 is not multiple-
copy atomic, then the core 1 store may propagate to core 2
before the core 0 store does, even though the core 0 store
executed first. This violates the intuitive notion of causality:
even though the core 0 store causes the core 1 store value to
exist, the core 0 store need not become visible to other cores
before the core 1 store. Nevertheless, this execution remains a
legal outcome on non-multiple-copy-atomic architectures.

To account for such strength differences in an architecture-
independent manner, we introduce various strength levels
into our MOST notation. Figure 3 summarizes the ordering
strength levels used to describe MORs for architectures sur-

Ld St
Ld X X
St — XM

(a) TSO (partial)

Ld St
Ld X X
St — XS

(b) IBM 370/390/zSeries (partial)

Figure 4: The addition of explicit strength levels allows MOSTs
to distinguish cases that would appear identical using tradi-
tional reordering tables.

Core 0 Core 1 Core 2
st [x], 1 st [y], 1 ld r3, [y]
ld r1, [x] ld r4, [x]
ld r2, [y]
Outcome: r1=r3=1, r2=r4=0: Allowed

Figure 5: TSO litmus test n7 [45]. Although the first two
instructions from core 0 access the same address, that
store→load same-address ordering is not enforced from the
point of view of other observers.

veyed in this paper. Additional (e.g., scoped) strength levels
could easily be added if necessary.

As an example of the benefit of these strength levels, Figure
4 shows partial MOSTs for the TSO and IBM 370/390/zSeries
memory models. With traditional reordering tables, the archi-
tectures would appear equivalent. With the improved precision
of MOSTs, the difference in store→store ordering strength is
made explicit.

3.2. Per-Address Orderings

Accesses from the same thread to the same address generally
must maintain the ordering specified by program order. This
property is sometimes called coherence2. There are excep-
tions; SPARC RMO and old Power models relax load→load
orderings to the same address, while the behavior is forbidden
yet observable on some GPUs [4, 7, 62, 59]. To address this in
MOSTs, we explicitly distinguish accesses to the same address
(SA) from those to different addresses (DA).

The notion of ordering strength from the previous subsec-
tion is also relevant to per-address orderings. In particular,
a store→load ordering may need to be enforced locally to
ensure that each load returns the value written by the latest
store to the same address. However, the same store→load
ordering may not need to be enforced from the point of view
of any remote observers. This is highlighted in Figure 5. In
this example, the core 2 load of [x] can occur after the core 0
load of [x] but before the core 0 store to [x] becomes visible
to core 2. In other words, from the point of view of core 2,
the core 0 store happens after the core 0 load of [x]. This
highlights the need not just to specify that orderings must be
enforced, but also to precisely specify their strength.

This amount of detail is enough to complete the MOST for
TSO PPO, as shown in Figure 6a. In particular, store→store
ordering has been marked as being multiple-copy atomic, and

2Coherence protocols often use stronger definitions of coherence (e.g.,
single writer or multiple readers), while other consistency model papers may
use weaker notions such as total orders only on stores to the same address.

Load to Load to
Diff. Same Store

Address Address
Load X X X
Store — XL XM

(a) TSO PPO

Load to Load to Store to Store to
Diff. Same Diff. Same

Address Address Address Address
Load — — — X
Store — XL — XM

(b) RMO PPO

Figure 6: Complete MOSTs for TSO and RMO PPO.

Core 0 Core 1 Core 2
(i) st [x], 1 (ii) r1 = ld [x] (v) r2 = ld [y]

(iii) sync (vi) st [y], 3
(iv) st [y], 2

If the outcome is r1=1, r2=2:
Group A of (iii) = {(i),(ii)}

Group B of (iii) = {(iv),(v),(vi)}

Figure 7: Since Power’s sync is A- and B-cumulative, it in-
cludes accesses from other threads into its scope. Most [8, 28,
51] but not all [6] formalizations consider (vi) to be in group B.

store→load ordering is marked as being enforced, but only
locally, if the instructions access the same address. Figure 6b
also shows how the MOST for SPARC RMO clearly indicates
that load→load ordering of accesses to the same address does
not need to be enforced.

3.3. Fence Cumulativity

As seen earlier, non-multiple-copy-atomic architectures are
by default prone to counterintuitive behaviors such as the
non-causal outcome of wrc (Figure 2). To enable fences to
restore causality, architectures such as ARM and Power define
fences to enforce ordering with respect to accesses in threads
other than the thread issuing the fence [8, 28]. This property
is known as fence cumulativity. Cumulativity is difficult to
define precisely, as can be seen from the variety of defini-
tions in use [5, 6, 8, 28, 42, 51]. Nevertheless, they all share
the same intuition. Cumulative fences are defined to enforce
ordering with respect to instructions in each of two groups:
group A is the set of instructions ordered before the fence, and
group B is the set of instructions ordered after the fence. The
base case is that groups A and B are the sets of instructions
prior to and subsequent to the fence in program order, respec-
tively. A-cumulativity (AC) requires that instructions (from
any thread) that have performed prior to an access in group A
are also members of group A. B-cumulativity (BC) requires
that instructions (from any thread) that perform after a load
that returns the value of a store in group B are also themselves
in group B.

Figure 7 demonstrates the cumulativity of the Power sync
fence (iii). In the base case, group A consists of (ii) and group
B consists of (iv). Then, if (ii) reads from (i), (i) happens be-
fore (ii), and so since the fence is A-cumulative, (i) is included

PO+ PO+
SA DA BC PO BC
Ld Ld Ld St St

PO Ld X X X X X
AC Ld X X X X X
PO St XL — — XN XN
AC St — — — XN XN

(a) Power lwsync

PO BC PO BC
Ld Ld St St

PO Ld X X X X
AC Ld X X X X
PO St X X XS XS
AC St X X XS XS

(b) Power sync

Figure 8: Incorporating cumulativity into MOST definitions

into group A of the sync instruction. Similarly, if (v) reads
from (iv), then since (vi) happens after (v), (v) and (vi) are
included in group B of the fence by B-cumulativity.

MORs address cumulativity by including A-cumulative
(AC) and B-cumulative (BC) operations as explicit rows and
columns in a MOST. Orderings of accesses related by cumu-
lativity are specified in MOSTs in exactly the same way as
for accesses related by program order, i.e., those in the same
thread as the MOR in question. Figure 8 shows the MOSTs
for both lwsync and sync. The fact that the sync fence (iii)
enforced ordering from (i) to (iv) in Figure 7, for example, is
captured by the XN entry in row (AC St) and column (PO St).
From the point of view of (iii), (i) is related by A-cumulativity,
and (iv) is later in program order.

3.4. Summary

By incorporating the details discussed above, MOSTs serve
as a complete, precise, architecture-independent, and self-
contained specification of the semantics of memory ordering
requirements (MORs). To demonstrate the usefulness of this
approach, the next section describes how to algorithmically
compare the strengths of different MOSTs. Then, Section 5
describes a more advanced case study in which MOSTs are
used to dynamically translate orderings of one architecture
onto primitives of a different architecture.

An extended technical report version of this paper includes
a gallery of example MOSTs for different architectures [39].

4. Comparing and Manipulating MOSTs
A key benefit of the MOST notation is that it allows for flexi-
ble, algorithmic comparison of MOSTs, even those originally
coming from different models. This type of comparison forms
a key component of compilers, mappers, or translators en-
visioned earlier in Section 1. This section describes how to
perform such comparisons.

4.1. MOST Partition Refinement

Because different architectures emphasize different consis-
tency model features, as described in Section 3, they may use
distinct choices of rows and columns to define their MOSTs.
To resolve this, before any MOST-MOST comparisons can
occur, the rows and the columns of the MOSTs must be re-
fined into matching partitions. The MOST refinement process
has two steps. The first is to find the set of categories that
should be used as the row and/or the column headings for the

PO+ PO+
SA DA PO
Ld Ld St

PO Ld X X X
PO St XL — XM

Refine−−−→

PO+ PO+
SA DA BC PO BC
Ld Ld Ld St St

PO Ld X X ? X ?
AC Ld ? ? ? ? ?
PO St XL — ? XM ?
AC St ? ? ? ? ?

(a) Because cumulativity is not explicitly addressed by the TSO PPO
specification, the MOST must be refined in order to compare it with MOSTs
from the Power architecture.

PO+ PO+
SA DA BC PO BC
Ld Ld Ld St St

PO Ld X X X X X
AC Ld X X X X X
PO St XL — X XM X
AC St X X X XM XM

(b) MOST for TSO PPO when properly refined to match the format of Power
architecture MOSTs.

Figure 9: Using MOST partition refinement to compare TSO
PPO and Power lwsync

refined MOSTs. Standard partition refinement techniques can
be used to merge the row and/or column choices from different
MOSTs into a finer-grained partition capturing both; thus we
omit a full algorithmic description here [46].

The second step is to fill in the cells of the newly-refined
MOST. In most cases, this simply requires duplicating the
original contents of a cell that was refined into multiple “child”
cells. However, if a particular MOST feature is architecture-
specific, partition refinement can lead to scenarios in which
the ordering strength of a particular cell is left unspecified.
These cells can be filled in conservatively (i.e., by assuming
the unspecified orderings are required, or by assuming they
are not enforced) or using some external reasoning.

Figure 9 shows an example. The MOST for lwsync (Fig-
ure 8) is laid out differently from the MOST defining TSO
PPO (Figure 6a), as TSO does not explicitly define its MOSTs
in terms of cumulativity. In this case, we can reason that cumu-
lativity follows implicitly from the XM store→store ordering
strength of TSO, and therefore the cumulative ordering cells
are in fact enforced.

4.2. MOST Comparison Operators

Once two MOSTs have been refined (if necessary) into the
same layout of rows and columns, then a comparison of the
two can be defined by comparing each pair of corresponding
cells. The cell-by-cell comparison is defined by checking
whether one strength level implies the other. For example,
enforcement of single-copy atomic store→store ordering im-
plies that multiple-copy atomic store→store ordering is also
enforced, and hence that XS ≥XM . We define the full comple-
ment of comparison operations (<,≤,=, 6=,≥,>) analogously.
Note that in general, this ordering is partial, not total.

Two MOSTs may also be combined to produce a single
MOST representing enforcement of both orderings. This can

PO+ PO+
SA DA BC PO BC
Ld Ld Ld St St

PO Ld — — — — —
AC Ld — — — — —
PO St — — X XM−N XM−N
AC St X X X XM−N XM−N

Figure 10: Subtracting Power lwsync (Figure 8) from (a prop-
erly refined) TSO PPO (Figure 9b). The shaded cell highlights
the ordering that distinguishes the two cases in Figure 1b.

occur if, e.g., there are two fences back-to-back in a program.
We define this operation as the join operator (∨). A join
operation is intuitively similar to a max operation, except that
the result may not be equal to any one of the inputs, because
comparison is not totally ordered. Instead, the join produces
a new MOST which is at least as strong as (in terms of ≥
above) each of the input MOSTs. The calculation of a join is
also defined cell-by-cell; each cell in the result MOST must
be an ordering strength which implies the strength levels in
the corresponding cells of both input tables. In other words, if
A∨B =C, then C must satisfy C ≥ A and C ≥ B.

Lastly, subtraction (−) produces a MOST which specifies
the orderings which are enforced by the first MOST but not
by the second. Conceptually, this corresponds to a scenario
in which a certain set of orderings is required, but a particu-
lar MOR may only enforce some subset of those orderings;
subtraction of these two MOSTs produces the set of required
orderings that remain unenforced. Again, ArMOR calculates
this in a cell-by-cell manner.

4.3. MOSTs Comparison Examples

As a relatively simple example, consider a comparison of the
two MOSTs of Figure 8. By comparing each pair of corre-
sponding cells in the table, it is clear that lwsync < sync:
every cell in the sync MOST is at least as strong as the corre-
sponding cell in the lwsync MOST, and some comparisons
are strict. In this case, the join (∨) of the two tables is equiv-
alent to the sync MOST. On the other hand, consider the
subtraction of TSO PPO (once properly refined) from Power
lwsync. This result is shown in Figure 10. Not only does
the subtraction operation show that lwsync clearly enforces
fewer orderings than TSO requires, but it also shows exactly
which orderings are unenforced.

A major benefit of the ArMOR approach is that the manipu-
lations performed above are entirely algorithmic. In the next
section, we will use these techniques to automatically derive
the designs of consistency model translation modules called
shims, given only the set of MOSTs used by the input and
output memory consistency models.

5. ArMOR Case Study: Dynamic Inter-MCM
Translation

Recent work has demonstrated the performance and/or power
benefits of performing dynamic binary translation across ISAs

and/or microarchitectures [20, 65]. However, this previous
work focused on opcode-for-opcode translation and memory
layout issues; it did not address memory consistency models.
Inter-consistency model translation has only been studied for
specific cases such as SC→TSO 13b [21, 64]. In this section,
we show how ArMOR fills this gap by deriving self-contained
translation modules called shims which easily, automatically,
and correctly translate between any pair of memory consis-
tency models. Although translation results in some overhead,
we envision this cost being outweighed by the benefits of
migrating to faster or more power-efficient hardware.

5.1. Motivating Example

Figure 11a shows the source code for the mp (message passing)
litmus test. For this test, the C11 memory ordering rules
specify that if the consumer reads 1 from y, then it must
also return 1 from x. In a traditional scenario, the compiler
ensures that all of the C11 ordering rules within each thread
are respected by the generated assembly code. This generally
occurs by looking up the architecture-specific implementations
of the software synchronization constructs in a pre-calculated
table such as Table 1. On Power, the orderings are enforced
by inserting lwsync fences, as shown in Figure 11b. On
x86-TSO, as Figure 11c shows, no fences are needed.

Problems arise if one tries to perform naive binary trans-
lation of the x86 code to execute on the Power architecture.
Opcode-for-opcode translation would produce the code in Fig-
ure 11d. Unfortunately, because the source x86 code lacks
fences, the translated code also lacks fences, meaning that
the extra enforcement required to prevent the bad outcome
of the mp litmus test is missing. This demonstrates that if
cross-ISA binary translation techniques do not account for the
consistency model, the resulting code could produce illegal
outcomes. The goal of this section is therefore to generate
translator shims which automatically and dynamically deter-
mine where to insert MORs and which MORs to insert, without
requiring offline analysis of the code.

5.2. Basic Operation

ArMOR translation takes place conceptually on a stream: an
ordered sequence of memory operations (loads, stores, or
fences) passing through some particular point in a processor or
IP core. The specific format of the stream operations depends
on the location where the translation is conducted. Streams
may carry macroops, microops, or whatever other form op-
erations may take at the chosen location. A stream may also
carry implicit (via preserved program order) or explicit (via
fences) ordering requirements on its memory operations. We
refer to incoming (newer) operations as upstream operations
and outgoing (older) operations as downstream operations.

A shim maps each incoming upstream operation into one
or more downstream operations which are strong enough to
enforce the memory ordering requirements of the upstream
operation. To translate an explicit upstream MOR such as a

// Producer/Thread 0

*x = 1;
atomic_store_explicit(&y, 1, memory_order_release);

// Consumer/Thread 1
if (atomic_load_explicit(&y, 1, memory_order_acquire))
assert(*x != 0);

(a) C11 Source Code for mp

Producer/Thread 0 Consumer/Thread 1

stw r1,0(r2) lwz r1,8(r2)
lwsync lwsync

stw r3,8(r2) lwz r3,0(r2)

Outcome 1:r1=1, 1:r3=0: Forbidden

(b) Compiled natively for Power: fences prevent the
illegal outcome

Producer/Thread 0 Consumer/Thread 1

mov 0(rdx),rax mov rax,8(rdx)
mov 8(rdx),rbx mov rbx,0(rdx)

Outcome 1:rax=1, 1:rbx=0: Forbidden

(c) Compiled natively for x86: no fences are needed
to prevent the illegal outcome

Producer/Thread 0 Consumer/Thread 1

stw r1,0(r2) lwz r1,8(r2)
stw r3,8(r2) lwz r3,0(r2)

Outcome 1:r1=1, 1:r3=0: × Observable ×
(d) Since x86 code does not contain fences, it be-
comes the job of the DBT engine to insert fences.
Otherwise, the bad outcome becomes observable.

Power
Compiler

x86
Compiler

x86 Opcode to
Power Opcode

Naive Translation

Figure 11: A compiler targeting either architecture directly would produce correct code. However, binary translation that does
not account for differences in consistency models would lead to the invalid outcome becoming observable.

fence, the shim must emit zero or more downstream operations
which combine to implement all of the ordering requirements
specified by that fence. To handle implicit upstream order-
ing requirements, the shim must enforce any upstream PPO
requirements that are not enforced by downstream PPO.

An overly-conservative (and hence low-performing) but cor-
rect baseline would be to insert the strongest possible fence
between each pair of instructions. In most cases, this is suffi-
cient to restore sequential consistency3, let alone the require-
ments of the source architecture. However, this approach is
overkill, as many inserted fences would be redundant and un-
necessary. Instead, shims insert MORs lazily—just before
they are actually needed.

Conceptually, shims are finite state machines in which
downstream MOR insertion takes place while traversing cer-
tain state transitions. Specifically, shims only enforce particu-
lar orderings if the relevant upstream operations have actually
been observed since a relevant earlier fence. We refer to such
orderings as pending. Each FSM state represents a particular
set of pending ordering requirements, and it does so in the
form of a pending ordering table. Pending ordering tables are
in a sense the inverses of MOSTs; rather than specifying which
orderings are required, they specify the orderings that have
not (yet) been enforced. As described in Figure 12, we de-
pict pending orderings of a given strength with the lowercase
equivalent of the uppercase notation from Figure 3.

Given a state and an incoming upstream operation, the shim
FSM generation algorithm calculates the MOR to emit (if any)
based on the current state’s pending orderings and then moves
to a new state reflecting a new set of pending orderings. Pend-
ing orderings within columns matching incoming accesses
need to be enforced by inserting a sufficiently strong fence or
other MOR. Other pending orderings can be delayed lazily.

Lazy insertion is not the only possible design approach.

3This is not universally true; for example, Itanium unordered accesses
cannot be made sequentially consistent [29].

Loads Stores
Loads — —
Stores — m

(a) Example pending orderings table.

- -

- m

(b) Equivalent FSM state
representation

Level Description
s An ordering of strength XS is pending
m An ordering of strength XM is pending
n An ordering of strength XN is pending
X An ordering of strength Xis pending
— No ordering is pending
(c) Pending orderings legend (derived from Fig. 3)

Figure 12: Pending ordering tables, which are used to de-
scribed states within shim FSMs

More eager insertion could make it easier to hide the latency
of inserted fences, but it may also result in inserting a larger
number of fences. Our experience is that the benefits of lazi-
ness outweigh the small potential latency hiding of eagerness.

5.3. Shim FSM Generation

The state transition function is given in Algorithm 1. Once
MORs have been inserted downstream, the orderings they
enforce can be subtracted (as defined in Section 4.2) from the
current set of pending orderings. The upstream operation is
then itself propagated downstream, and any orderings in the
corresponding row which are enforced by PPO upstream but
not downstream must be marked as pending.

One subtlety in Algorithm 1 is the use of assumed pend-
ing ordering requirements, or “assumedReqs”. This property
handles the case in which accesses from certain rows and/or
columns are not directly observable and must therefore be con-
servatively assumed to be pending ordering enforcement. The
“assumedReqs” approach allows shims to translate correctly
without needing to observe the execution of other cores. In
particular, this addresses the challenge that cumulative fences
(Section 3.3) enforce ordering restrictions with respect to ac-
cesses from other cores, even though cores may not always be

Algorithm 1 Shim FSM Transition Function
Function: NextState(currentState, op):

if isFence(op) then
orderingsToEnforce = op ∨ assumedReqs
newOrderings = /0 // Fences are not themselves in groups A or B

else
// Enforce pending orderings in relevant column(s)
orderingsToEnforce = KeepColumn(currentState, op) ∨ assumedReqs
// Mark relevant orderings in relevant row(s) pending
newOrderings = KeepRow(upstreamPPO − downstreamPPO, op)

end if
insertedFence = WeakestSufficientFence(orderingsToEnforce)
// propagated = pending and not enforced by inserted fence
propagatedOrderings = state − insertedFence
nextState = propagatedOrderings ∨ newOrderings
return (insertedFence, nextState)

KeepColumn(s,col)[i][j] =

{
− j 6= col
s[i][j] j = col

KeepRow(s,row)[i][j] =

{
− i 6= row
s[i][j] i = row

- - -

- - -

- - -

X X -

st/st ld/mfence;ld

ld/ld

mfence/mfence

st/st

mfence/
mfence

(start)

(a) Automatically-generated shim FSM

s0

s1

st/st ld/mfence;ld

ld/ld

st/st

(b) Previous work [21, 64].

Key:
x/y On an incoming upstream operation x, send y downstream

x/y;z On an incoming upstream operation x, send y followed by z
downstream

Figure 13: Shim FSM for SC upstream and TSO downstream.
ArMOR shims also allow upstream MORs to act as inputs.

able to directly observe such accesses.
Given MOSTs for a source and target architecture, ArMOR

can generate shim state machines offline and in advance. Fur-
thermore, the state space of the shim FSMs is small enough
that the space can be explored completely in just seconds. As
Section 7.1 shows, the FSMs generally end up with few states
and hence can be implemented very cheaply.

We include one special-case optimization: we allow a
store→store ordering of strength XS to be enforced by a
MOR with enforcing store→store ordering of strength XM
if store→store ordering of strength Xis marked as pending.
Intuitively, this captures the notion that the only difference be-
tween single- and multiple-copy atomicity is that forwarding
from a local store buffer is permitted only in the latter. This op-
timization, which is used implicitly in previous work [21, 64],
makes shims slightly lazier and hence improves performance.

As an example, Figure 13a shows the automatically-
generated FSM for the shim translating between sequential
consistency upstream and TSO downstream. This shim has

two states, and it has the effect that a fence gets inserted be-
tween every store and subsequent load. As Figure 13b shows,
this particular case has been studied before, and so it serves as
a useful sanity check for our algorithm.

5.4. Design Considerations

Microarchitectural Placement. ArMOR requires that a
stream be sorted into a legal visibility order so that preserved
program order needs can be detected. This means that when
shims are implemented in hardware, their placement within
the pipeline matters. Placing a shim too early in the pipeline
may render it unable to track same/different address dependen-
cies (Section 3.2). Placing it at a later location through which
non-memory instructions do not pass may prevent it from
being able to observe information such as inter-instruction
dependencies. In such cases, these unobservable dependencies
would have to conservatively be included into “assumedReqs”
(Algorithm 1) along with cumulativity.

Our hardware evaluation (Section 6.2) places a shim into
the issue stage of a pipeline, as all necessary information
is observable at that point. Our software dynamic binary
translation-based evaluation operates the stream of instructions
in their original program order.

Atomic Instructions. Atomic instructions such as
compare-and-swap can be easily added into our model. If
atomics are considered a separate class of instruction from
loads and stores, they would simply form new MOST rows
and columns. Alternatively, if atomics are treated as a bun-
dled load-store pair, Algorithm 1 could be modified to look
up multiple rows and columns for such instructions, rather
than just one. Either solution is viable as long as the ordering
implications of such operations are correctly specified.

Downstream Non-Fence MORs. Downstream MORs
need not be fences. It is possible, for example, to use
lightweight MORs such as ARM/Power address dependen-
cies as well. Doing so would require more than just fence
insertion; it would also require rewriting instruction operands,
but dynamic binary translators already do this regularly [36].

Stream Interruptions. Streams may be interrupted by
events such as context switches and hence lose their state.
A conservative solution is to simply enforce a full fence in-
struction and then return to the start state. A more aggressive
solution would be to jump to a state which marks all orderings
not enforced by the downstream PPO as pending. In either
solution, ArMOR’s fundamental operation remains the same.

Dynamically Changing Partition Subsets. Algorithm 1
as shown assumes that the categorization of a given instruction
into a particular row and column is based only on static proper-
ties of that instruction. However, this may not always be true.
AMD GPUs contain a fence s_waitcnt <n> which only en-
forces ordering with respect to accesses other than the most
recent n. If the classification of a memory access can change,
the state transition function must be modified to account for
such changes. In practice, few MORs are defined this way,

Property Real System Simulator
System 8-core 4-core
CPU Xeon X7560 gem5 O3

Frequency 2.27 GHz 2.0 GHz
Pipeline OoO OoO

L1I Cache 32kB, private 32kB, private
L1D Cache 16kB, private 64kB, private
L2 Cache 256kB, private 2MB, shared

Cache coherence MESI MOESI_hammer
Memory timing model N/A Ruby

Table 2: System configurations

and so a cheaper option is to overapproximate the state and
avoid the need for such dynamic reclassification altogether.

Speculation. ArMOR does not inhibit the use of specula-
tive ordering enforcement techniques [21, 23], as long as these
techniques maintain the architecturally-required behaviors.

6. Evaluation Methodology

In this section, we describe our evaluation of the ArMOR
shims. We first provide a characterization of the breadth of
ArMOR by generating shims for a number of upstream and
downstream models. We then evaluate the performance of a
subset of these models. We break our performance evaluation
into two parts. We first implement ArMOR shims as software
Pintools [36]. With near-native speeds, this approach allows
for rapid exploration of various design possibilities. We then
evaluate ArMOR in hardware by inserting shims into the gem5
O3 simulator pipeline.

6.1. Pintool-based Exploration

Software-based dynamic binary translation can be used by
MOR designers to explore the performance impact of differ-
ent hardware ordering requirements, fence implementations,
or translation approaches prior to their being hardened into
a processor. We use this approach to quantify the perfor-
mance impact of statefulness in shims, and we explore some
additional performance-oriented optimizations. We use Intel
Pin [36] to implement our software shims. Because Pin ex-
ecutes on the x86 architecture and therefore has TSO as the
downstream model, we use SC as the upstream model.

We evaluate three shim configurations. The first is the naive
stateless case which always inserts a LOCKed instruction
or mfence between each pair of memory instructions. The
second is the stateful shim shown in Figure 13a. Third, the ISA-
assisted scenario approximates the benefits of augmenting an
ISA to track software- or compiler-provided information about
accesses that do not need to enforce consistency. An increasing
body of work has proven the benefits of providing hardware
support for finer-grained specification of memory consistency
behavior [19, 57]. Because we are constrained by Pin’s need
to execute on real hardware (which has no such ISA support),
we instead present approximations which closely model the
performance benefits of enabling such modifications.

The ISA-assisted scenario considers two ways in which
the ISA can be augmented. First, certain accesses might be

marked thread-private and hence not subject to reordering
rules. Even relatively straightforward compiler analysis is
able to classify as many as 81% of memory accesses [57] as
private. We approximate this by inferring thread-privacy for
all accesses to the stack. While this is not safe in general, our
analysis reveals that it is safe for our benchmark suite4. This
approximation classifies 75% of accesses as thread-private,
very close to the percentage found by the previous work.

Second, we model the benefits of a compiler annotat-
ing memory accesses as being data-race-free, and thus not
subject to any reordering constraints [2, 15]. For our pre-
C/C++11 benchmark suite, all synchronization accesses oc-
curred through libraries such as libpthread or inline assem-
bly, with the remainder of the program accesses remaining
data-race-free. Because library behavior may not be precisely
known at compilation time, we chose to conservatively assume
that all library code was annotated as potentially subject to
races (and hence in need of shimming).

We run Pintool experiments on the real system from Table 2.
We use benchmarks from PARSEC [13] with the native input
set and four threads. We take three measurements for each
scenario: the non-Pintool native runtime of the benchmark
(“native”), the runtime of the benchmark with analysis en-
abled but fence insertion itself disabled (“instrumentation”),
and the runtime with fence insertion enabled (“shim”). This al-
lows us to roughly separate the overhead of the shim from the
overheads of Pin itself. We use LOCK-prefixed add instruc-
tions as the primary downstream MOR; these are equivalent
to mfence in strength but 28% faster in our experiments.

6.2. Hardware Simulation Methodology

While Pin offers opportunities for early exploration, hardware
support can further accelerate translation. We use the gem5
simulator to implement a hardware shim within the issue queue
of the gem5 O3 pipeline [14]. In the issue queue, the shim
has enough information to properly track both instruction
dependencies and preserved program order. As Figure 14
summarizes, the gem5 O3 pipeline is multiple-copy-atomic
and always enforces load→store ordering, while load→load
and/or store→store ordering enforcement (of strength XS) are
optional. We adjust these options to implement a variety of
downstream preserved program order settings.

At the gem5 O3 issue queue, regardless of the
architecturally-defined fences, three downstream fences are
available microarchitecturally: a load fence, a store fence, and
a full fence. The MOSTs for these fences are also summarized
in Figure 14. The fences are implemented microarchitecturally
by treating an associated memory access as non-speculative.
This requires that before the access executes, it must be at the
head of the reorder buffer and the store buffer must be empty.
The associated operation is also treated as a load and/or store

4There are cases in which worker threads access objects allocated by the
main thread, but these are synchronized via pthreads.

PO+ PO+ PO+ PO+
SA DA SA DA
Ld Ld St St

Ld X X X X
St X X XS XS

(a) Full fence

PO+ PO+ PO+ PO+
SA DA SA DA
Ld Ld St St

Ld X — X X
St XL — XM XM

(b) PLO PPO

PO+ PO+ PO+ PO+
SA DA SA DA
Ld Ld St St

Ld X — X X
St XL — XS XS

(c) MSFence

PO+ PO+ PO+ PO+
SA DA SA DA
Ld Ld St St

Ld X X X X
St XL — XM —

(d) PSO PPO

PO+ PO+ PO+ PO+
SA DA SA DA
Ld Ld St St

Ld X X X X
St X X XM —

(e) MLFence

PO+ PO+ PO+ PO+
SA DA SA DA
Ld Ld St St

Ld X — X X
St XL — XM —

(f) LSO PPO

Figure 14: Available downstream PPO and MORs of the gem5
O3 simulated CPU.

Downstream
Upstr. TSO PLO PSO LSO RMO RMO+ PwrA Pwr ARM

SC 2 1 2 1 1 2 2 1 1
TSO - 2 2 4 3 5 4 1 1
PLO - - 2 2 2 4 3 1 1
PSO - 2 - 2 3 3 2 1 1
LSO - - - - 2 2 2 1 1
RMO - - - - - - 1 1 1
PwrA - - - - - - - 1 1
Pwr - - - - - - - - 1

ARM - - - - - - - 1 -
Key for models not yet described:

RMO+
RMO variant with sixteen fences representing four
independent choices of load→load, load→store,
store→load, and store→store ordering

PwrA A multiple-copy atomic variant of Power

Table 3: Number of states in shim for each pairing of upstream
and downstream models. The performance of the shaded
FSMs is evaluated in Section 7.3.

.

barrier to prevent subsequent memory microops of the relevant
type(s) from executing until it has itself completed.

Table 2 gives specifications for our simulated system. Be-
cause the generated FSMs are small, we assume they can be
updated in parallel with other pipeline operations with no in-
curred latency. We use PARSEC [13] benchmarks with the
simsmall input set and 4 threads. We execute these bench-
marks on four downstreams: TSO, PSO, PLO (partial load or-
der, named by analogy to SPARC PSO), and LSO (load→store
order enforced). We compare the performance for each case,
including both stateless and stateful shims.

7. Performance Results

7.1. Shim FSM Generation

To demonstrate the full breadth of applicability of ArMOR, we
automatically generate shim FSMs for various combinations of
the upstream and downstream consistency models. A summary

- -

- -

- -

m -

X -

- -

X -

m -

ld/ld

st/st

ld/MLFence;ld

st/st

ld/MLFence;ld

st/st

st/st

ld/MLFence;ld

(start)

Figure 15: The shim FSM generated for SC on PLO (for visual
clarity, not all pending ordering table cells are drawn). The bot-
tom two states are transient (because there are no downward
arrows to return to them from the top two states). The top
two states are redundant because their behavior is identical.
Therefore, this FSM reduces to a single state.

- -

- -

- -

- m

X X
- -

ld/sync;ld

st/sync;st

mfence/
sync

ld/sync;ld

st/sync;st

mfence/sync

ld/sync;ld

st/
sync;st

mfence/sync

(start)

Figure 16: Automatically-generated shim FSM for TSO up-
stream and Power downstream (for visual clarity, not all pend-
ing ordering table cells are drawn).

is shown in Table 3; the shaded subset highlights the scenarios
evaluated in the next two sections. We also optimize away
transient and redundant states, as in Figure 15, to reduce the
implementation cost. These results show that shim FSMs are
generally very small, and hence that they can be implemented
in practice with little area cost.

Adding state does not help in every situation. Notably,
Figure 16 shows that the FSM generated for TSO upstream
and ARM/Power downstream minimizes to a trivial machine
which always inserts sync. While it may seem to be overkill
to insert a sync before each memory access, Figure 1b high-
lighted that anything weaker would permit behaviors such as
iriw to become illegally observable. In fact, every multiple-
copy-atomic upstream paired with a downstream allowing
non-multiple-copy-atomic stores produces a FSM which is
just as inefficient. This is not a shortcoming of ArMOR, but
rather a fundamental difference in the behavior of stores on
each architecture. We return to this observation in Section 7.4.

Lastly, we note that we attempted to translate to GPUs
as well, but we were limited both by the incompleteness of
current specifications as well as, more fundamentally, a lack
of both multiple-copy atomicity and cumulative fences [4].
With neither feature, GPUs simply have no means by which to
enforce implicit (e.g., on TSO) or explicit (e.g., Power sync
or ARM dmb) cumulativity requirements, and hence they are
unable to serve as downstream targets for translation.

10.40	
 12.53	

13.58	
 14.34	

10.39	

13.17	

12.57	
 18.27	

0	

2	

4	

6	

8	

10	

bl
ac
ks
ch
.	

bo
dy
tr
.	

ca
nn

ea
l	

de
du

p	

fa
ce
sim

	

fe
rr
et
	

flu
id
an
.	

fr
eq

m
in
e	

ra
yt
ra
ce
	

st
re
am

cl
.	

sw
ap
t.	

vi
ps
	

GM
ea
n	
 N
or
m
al
ize

d	

CP

U
	
 C
yc
le
s	

shim	
 instrumentaKon	
 naKve	

Figure 17: Performance overhead of ArMOR using dynamic bi-
nary translation and different levels of performance optimiza-
tion. From left to right, the three bars represent the stateless,
stateful, and ISA-assisted stateful cases, respectively.

0	

0.5	

1	

1.5	

2	

2.5	

3	

blacksch.	
 bodytr.	
 canneal	
 fluidan.	
 swapt.	
 x264	
 GMean	

Ru
n$

m
e	

(n
or
m
al
iz
ed

	
 to
	
 T
SO

	

on

	
 T
SO

)	

RWO/Stateless	
 RWO/Stateful	
 PLO/Stateless	

PLO/Stateful	
 PSO/Stateless	
 PSO/Stateful	

Figure 18: Simulated performance with x86-TSO software and
varying hardware models.

7.2. DBT-Based Exploration

Figure 17 shows the performance of the three Pintool shim con-
figurations of Section 6.1. We normalize to the runtime of each
benchmark when it is compiled for x86-TSO and executed
natively on x86-TSO hardware; this conservatively attributes
the inherent overhead of SC vs. TSO to ArMOR as well.
The stateless shim has a geomean overall performance cost
of 9.33×. The stateful configuration improves this to 3.05×.
Finally, making use of the ISA augmentations discussed in
Section 6.1 reduces the total overhead to just 1.33×.

The instrumentation overhead was approximately the same
for each Pintool—1.31× on average. This shows that the
ArMOR shims themselves do not introduce significant over-
head beyond the overhead of instrumentation itself—175% in
the case of our conservative stateful configuration, but only
3% in the more aggressive ISA-assisted case. These numbers
demonstrate that ArMOR translation can take place with low
or, under the right conditions, even negligible overhead in
practice beyond what is already needed to perform dynamic
binary translation. They also demonstrate the value of using
software-based DBT as a tool for exploring the design space
of and profiling the use of synchronization in practice.

7.3. Performance of Hardware Implementation

Figures 18 and 19 show the overheads of running x86-TSO and
x86-SC software, respectively, on cores with weaker hardware
memory models. Stateful shims are shown with striped bars;
however, the stateful FSMs for SC-on-PLO and SC-on-LSO
are equivalent to the stateless cases, and so we draw only one
bar for these. We normalize to x86-TSO hardware, just as we
do for the Pintool results.

0	

0.5	

1	

1.5	

2	

2.5	

3	

blacksch.	
 bodytr.	
 canneal	
 fluidan.	
 swapt.	
 x264	

Ru
n$

m
e	

(n
or
m
al
iz
ed

	
 to
	
 T
SO

	

on

	
 T
SO

)	

RWO	
 PLO	
 PSO/Stateless	

PSO/Stateful	
 TSO/Stateless	
 TSO/Stateful	

Figure 19: Simulated performance with x86-SC software and
varying hardware models, normalized to x86-TSO software on
x86-TSO hardware as described in the text.

For x86-TSO upstream, in some cases, the benefits of state-
fulness are negligible. These FSMs stay in a single state ex-
cept when they see an upstream LOCKed instruction or fence.
Since both are rare under TSO, the FSM mostly remains in the
single state in practice. For this reason, implementations may
choose to treat the lightly-used state as transient (as in Fig-
ure 15) and optimize it away to make the FSM even cheaper.

In all cases, the overheads remain well within an acceptable
range for dynamic binary translation [10, 36]: even the worst
case overhead of SC on RMO requires a geomean slowdown
of only 77%. In the best case, TSO on PSO, the overheads are
as small as 10%.

7.4. Takeaways

Our explorations both via Pintools and via simulation of
hardware-supported shims have led to several major takeaways.
First, architectures should provide a way to optionally make
stores multiple-copy atomic. A multiple-copy atomic variant
of Power, labeled “PwrA” in Table 3, does allow for more
efficient FSMs. If the user is sure that no iriw-like behavior
will occur, then multiple-copy atomicity can be disabled to
improve performance; otherwise, it can be enabled to ensure
safety. Notably, ARMv8 has taken this approach with new
load-acquire and store-release opcodes [8]. ArMOR provides
a rigorous methodology for performing this analysis.

Our second observation is that the more downstream MORs
(i.e., fence variations) are available, the more intelligent the
translation can be. The difference between “RMO” and
“RMO+” in Table 3 is that the former implements only the three
fences shown in Figure 14, while the latter implements sixteen
possibilities, with one choice each for load→load, load→store,
store→load, and store→store. Having finer-grained down-
stream fences allows for smarter fence choices and higher-
performance implementations.

Third, ISAs and intermediate representations should main-
tain consistency metadata even if it is redundant with respect to
preserved program order. In particular, ISAs with strong mod-
els carry little information about consistency, as it is mostly
redundant. However, this makes translation much more diffi-
cult, as the overly-constrained preserved program orderings of
a strong model like TSO are themselves costly and mostly un-
necessary. Keeping consistency information in the ISA would
provide numerous benefits (shown in Section 7.2 and previ-

ous work) at the cost of modest code size increase. In such a
scenario, ArMOR can be used to remove upstream fences that
become redundant under a stronger downstream model.

Finally, we note that non-multiple-copy-atomic architec-
tures cannot ignore cumulativity. If they do, then there simply
is no way to implement communication across more than two
cores safely. While current hardware (e.g., GPUs) simply
limits the amount of inter-thread communication that can take
place, the increasingly heterogeneous hardware of the future
will demand the ability to perform such many-threaded con-
current tasks. Fortunately, ArMOR provides a way to evaluate
those needs early in the design process.

8. Related work
Memory Consistency Models. Adve and Gharachorloo pro-
vide a comprehensive survey [1] of early attempts to define
various consistency models. Since then, there has been a
progression [9, 55] in formalizing the definitions of memory
models. Modern formalizations generally fall into two prov-
ably equivalent categories. Operational models [45, 51] define
valid executions as those which are observable on a formally-
defined abstract machine model. Axiomatic models [3, 40]
define valid executions as those which satisfy the chosen set of
memory ordering axioms. PipeCheck [38] extended memory
model analysis to the microarchitecture space. Most of these
models “hard-code” fence behavior into the model in some
way, by defining fences in terms of barrier propagation and
acknowledgment [51], store buffers [45], or other architecture-
specific features. To the best of our knowledge, no existing
model specifies fence types and ordering specifications in a
way that is sufficiently general and architecture-independent
that inter-architecture conversion can be safely performed dy-
namically in the way ArMOR does.

Software also plays a major role in consistency [15, 19,
41, 60]. There have been numerous academic proposals
for software-level consistency models for heterogeneous sys-
tems [22, 31, 37, 50]. In this paper, we focus mostly on binary
translation, although we do make use of software model con-
cepts such as data race freedom [2].

Recent work has also explored the application of consis-
tency models to non-volatile storage [47]. We see ArMOR as
applicable to memory persistency model analysis as well.

Fence Insertion and/or Elimination. The work of Alglave
et al. [6] has a goal similar to ours in that it studies how to
restore the behavior of one architecture by inserting fences
on a weaker architecture. Their definition of cumulativity is
subtly different than the definition given in the Power archi-
tectural specification [28], and their proof-based method does
not readily adapt to a modified definition. More critically,
their solution is declarative: it specifies only a static correct-
ness condition rather than a constructive dynamic translation
method. Furthermore, their correctness condition depends par-
tially on inserting fences between loads and their source stores.
ArMOR makes no such assumption about identifying a load’s

source store, as such information is often simply unavailable.
Since the work of Shasha and Snir [54], researchers have

considered topics such as verifying the insertion of fences
to implement a stronger consistency model [17, 33] and/or
the elimination of redundant fences [64]. Others focus on
automatically determining where to insert fences [3, 27], and
also on incorporating such methods into a compiler [35, 61].

Cross-ISA Translation. DeVuyst et al. [20] study
heterogeneous-ISA code migration. They focus on laying
out data in an architecture-independent manner, and they use
compiler support and bursts of dynamic binary translation to
smooth the migration process. They assume, however, that the
source and target ISAs have identical consistency models; they
do not address translation of memory ordering requirements.

Various case studies have studied translation in more spe-
cific contexts, including Baraz et al. [11] for x86 code on Ita-
nium processors, Higham and Jackson [26] for SPARC to and
from Itanium, and Gschwind et al. [25] from the “firm” model
(similar to TSO) onto Power. Industry white papers [16] have
also discussed this topic. None of these techniques, however,
easily generalize to other architectures as ArMOR does.

9. Conclusion
ArMOR demonstrates the practicality of automating analy-
sis and dynamic translation of memory consistency models.
We foresee ArMOR’s MOST notation being useful across a
broad range of compilation and translation tasks including
static compilation, JIT compilation, dynamic binary trans-
lation, and more. ArMOR highlights the pros and cons of
different choices of fences and MORs, and we use ArMOR to
provide insights that can assist in exploring memory system
design tradeoffs in future heterogeneous systems.

Acknowledgments
We thank Santiago Cuellar, Yaosheng Fu, Yatin Manerkar, Tri
Nguyen, Daniel Sorin, and the anonymous reviewers for their
helpful feedback. The authors acknowledge the support of
C-FAR (under the grant HR0011-13-3-0002), one of six SRC
STARnet centers by MARCO and DARPA. In addition, this
work was supported in part by the National Science Founda-
tion (under the grant CCF-0916971). Michael Pellauer was
employed at Intel VSSAD during much of the research for this
paper, and Daniel Lustig was partially supported by an Intel
Graduate Fellowship.

References
[1] S. Adve and K. Gharachorloo, “Shared memory consistency models:

A tutorial,” IEEE Computer, vol. 29, no. 12, pp. 66–76, 1996.
[2] S. Adve and M. Hill, “Weak ordering: a new definition,” ISCA, 1990.
[3] J. Alglave, “A formal hierarchy of weak memory models,” Formal

Methods in System Design (FMSD), vol. 41, no. 2, pp. 178–210, 2012.
[4] J. Alglave, M. Batty, A. Donaldson, G. Gopalakrishnan, J. Ketema,

D. Poetzl, T. Sorensen, and J. Wickerson, “GPU concurrency: weak
behaviours and programming assumptions,” ASPLOS, 2015.

[5] J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell, and
F. Z. Nardelli, “The semantics of Power and ARM machine code,” 4th

Workshop on Declarative Aspects of Multicore Programming (DAMP),
2009.

[6] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, “Fences in weak
memory models,” CAV, 2010.

[7] J. Alglave, L. Maranget, and M. Tautschnig, “Herding cats: Modelling,
simulation, testing, and data-mining for weak memory,” ACM TOPLAS,
vol. 36, July 2014.

[8] ARM, “ARM architecture reference manual,” 2013.
[9] Arvind and J.-W. Maessen, “Memory model = instruction reordering +

store atomicity,” ISCA, 2006.
[10] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazel-

wood, A. Jaleel, C.-K. Luk, G. Lyons, H. Patil, and A. Tal, “Analyzing
parallel programs with Pin,” IEEE Computer, vol. 43, no. 3, pp. 34–41,
2010.

[11] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang,
and Y. Zemach, “IA-32 execution layer: a two-phase dynamic translator
designed to support IA-32 applications on Itanium-based systems,”
MICRO, 2003.

[12] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell, “Clarifying
and compiling C/C++ Concurrency: from C++11 to POWER,” POPL,
2012.

[13] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[14] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simula-
tor,” SIGARCH Comp. Arch. News, vol. 39, no. 2, Aug. 2011.

[15] H.-J. Boehm and S. Adve, “Foundations of the C++ concurrency mem-
ory model,” PLDI, 2008.

[16] Broadcom, “Migrating CPU specific code from the PowerPC to the
Broadcom SB-1 processor,” White Paper SB-1-WP100-R, 2002.

[17] S. Burckhardt, R. Alur, and M. M. K. Martin, “CheckFence: Check-
ing consistency of concurrent data types on relaxed memory models,”
PLDI, 2007.

[18] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata, “Cell broadband engine
architecture and its first implementation–—a performance view,” IBM
Journal of Research and Development, vol. 51, no. 5, pp. 559–572,
2007.

[19] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo: Rethinking
the memory hierarchy for disciplined parallelism,” PACT, 2011.

[20] M. DeVuyst, A. Venkat, and D. Tullsen, “Execution migration in a
heterogeneous-ISA chip multiprocessor,” ASPLOS, 2012.

[21] Y. Duan, A. Muzahid, and J. Torrellas, “WeeFence: Toward making
fences free in TSO,” ISCA, 2013.

[22] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W.-M. W.
Hwu, “An asymmetric distributed shared memory model for heteroge-
neous parallel systems,” ASPLOS, 2010.

[23] K. Gharachorloo, A. Gupta, and J. Hennessy, “Two techniques to
enhance the performance of memory consistency models,” 29th Inter-
national Conference on Parallel Processing (ICPP), 1991.

[24] P. Greenhalgh, “big.LITTLE processing with ARM Cortex-A15
& Cortex-A7,” ARM White Paper, 2011. [Online]. Available:
http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf

[25] M. Gschwind, K. Ebcioğlu, E. Altman, and S. Sathaye, “Binary trans-
lation and architecture convergence issues for IBM System/390,” ICS,
2000.

[26] L. Higham and L. Jackson, “Translating between Itanium and Sparc
memory consistency models,” SPAA, 2006.

[27] T. Q. Huynh and A. Roychoudhury, “Memory model sensitive bytecode
verification,” Formal Methods in System Design (FMSD), vol. 31, 2007.

[28] IBM, “Power ISA version 2.07,” 2013.
[29] Intel, “Intel Itanium architecture software developer’s manual, revision

2.3,” 2010.
[30] ——, “Intel 64 and IA-32 architectures software developer’s manual,”

2013.
[31] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel,

“Cohesion: A hybrid memory model for accelerators,” ISCA, 2010.
[32] Khronos Group, “OpenCL 2.0.” [Online]. Available: http://www.

khronos.org/opencl
[33] M. Kuperstein, M. Vechev, and E. Yahav, “Automatic inference of

memory fences,” FMCAD, 2012.
[34] N. M. Lê, A. Pop, A. Cohen, and F. Zappa Nardelli, “Correct and

efficient work-stealing for weak memory models,” PPoPP, 2013.
[35] J. Lee and D. A. Padua, “Hiding relaxed memory consistency with

compilers,” PACT, 2000.

[36] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized pro-
gram analysis tools with dynamic instrumentation,” PLDI, 2005.

[37] D. Lustig and M. Martonosi, “Reducing GPU offload latency via fine-
grained CPU-GPU synchronization,” HPCA, 2013.

[38] D. Lustig, M. Pellauer, and M. Martonosi, “PipeCheck: Specifying
and verifying microarchitectural enforcement of memory consistency
models,” MICRO, 2014.

[39] D. Lustig, C. Trippel, M. Pellauer, and M. Martonosi, “ArMOR: De-
fending against consistency model mismatches in heterogeneous archi-
tectures,” Princeton Computer Science Tech. Report TR-981-15, 2015,
(conference paper extension).

[40] S. Mador-Haim, L. Maranget, S. Sarkar, K. Memarian, J. Alglave,
S. Owens, R. Alur, M. M. K. Martin, P. Sewell, and D. Williams, “An
axiomatic memory model for POWER multiprocessors,” 2012.

[41] J. Manson, W. Pugh, and S. Adve, “The Java memory model,” POPL,
2005.

[42] F. Z. Nardelli, P. Sewell, J. Sevcik, S. Sarkar, S. Owens, L. Maranget,
M. Batty, and J. Alglave, “Relaxed memory models must be rigorous,”
2009.

[43] NVIDIA, “NVIDIA Tegra K1: A new era in mobile computing,” 2014.
[Online]. Available: http://www.nvidia.com/content/pdf/tegra_white_
papers/tegra_k1_whitepaper_v1.0.pdf

[44] ——, “CUDA C programming guide v5.5,” 2013.
[45] S. Owens, S. Sarkar, and P. Sewell, “A better x86 memory model:

x86-TSO,” 22nd Conference on Theorem Proving in Higher Order
Logics (TPHOLs), 2009.

[46] R. Paige and R. E. Tarjan, “Three partition refinement algorithms,”
SIAM Journal on Computing, vol. 16, no. 6, pp. 973–989, 1987.

[47] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” ISCA,
2014.

[48] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Hasel-
man, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A
reconfigurable fabric for accelerating large-scale datacenter services,”
ISCA, 2014.

[49] Qualcomm, “Snapdragon S4 processors: System on chip solutions for a
new mobile age,” October 2011. [Online]. Available: https://developer.
qualcomm.com/download/qusnapdragons4whitepaperfnlrev6.pdf

[50] B. Saha, X. Zhou, H. Chen, Y. Gao, S. Yan, M. Rajagopalan, J. Fang,
P. Zhang, R. Ronen, and A. Mendelson, “Programming model for a
heterogeneous x86 platform,” PLDI, 2009.

[51] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams, “Under-
standing POWER microprocessors,” PLDI, 2011.

[52] J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell,
“CompCertTSO: A verified compiler for relaxed-memory concurrency,”
Journal of the ACM (JACM), vol. 60, no. 3, p. 22, 2013.

[53] P. Sewell et al., “C/C++11 mappings to processors,” http://www.cl.cam.
ac.uk/~pes20/cpp/cpp0xmappings.html.

[54] D. Shasha and M. Snir, “Efficient and correct execution of parallel
programs that share memory,” TOPLAS, 1988.

[55] X. Shen, Arvind, and L. Rudolph, “Commit-Reconcile and Fences: A
new memory model for architects and compiler writers,” ISCA, 1999.

[56] A. L. Shimpi, “AMD announced K12 core: Custom 64-bit ARM
design in 2016.” [Online]. Available: http://www.anandtech.com/show/
7990/amd-announces-k12-core-custom-64bit-arm-design-in-2016

[57] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi,
“End-to-end sequential consistency,” ISCA, 2012.

[58] D. Sorin, M. Hill, and D. Wood, A Primer on Memory Consistency and
Cache Coherence, ser. Synthesis Lectures on Computer Architecture,
M. Hill, Ed. Morgan & Claypool Publishers, 2011.

[59] SPARC, “SPARC architecture manual, version 9,” 1994.
[60] H. Sung, R. Komuravelli, and S. V. Adve, “DeNovoND: efficient

hardware support for disciplined non-determinism,” ASPLOS, 2013.
[61] Z. Sura, X. Fang, C.-L. Wong, S. P. Midkiff, J. Lee, and D. Padua,

“Compiler techniques for high performance sequentially consistent Java
programs,” PPoPP, 2005.

[62] J. M. Tendler, J. S. Dodson, J. Fields, H. Le, and B. Sinharoy,
“POWER4 system microarchitecture,” IBM Journal of Research and
Development, vol. 46, no. 1, pp. 5–25, 2002.

[63] “Top500,” http://www.top500.org, accessed: Jul. 28, 2014.
[64] V. Vafeiadis and F. Z. Nardelli, “Verifying fence elimination optimisa-

tions,” SAS, 2011.
[65] A. Venkat and D. M. Tullsen, “Harnessing ISA diversity: Design of a

heterogeneous-ISA chip multiprocessor,” ISCA, 2014.

