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Abstract—We present PipeCheck, a methodology and auto-
mated tool for verifying that a particular microarchitecture
correctly implements the consistency model required by its archi-
tectural specification. PipeCheck adapts the notion of a “happens
before” graph from architecture-level analysis techniques to the
microarchitecture space. Each node in the “microarchitecturally
happens before” (µhb) graph represents not only a memory
instruction, but also a particular location (e.g., pipeline stage)
within the microarchitecture. Architectural specifications such
as “preserved program order” are then treated as propositions
to be verified, rather than simply as assumptions.

PipeCheck allows an architect to easily and rigorously test
whether a microarchitecture is stronger than, equal in strength
to, or weaker than its architecturally-specified consistency model.
We also specify and analyze the behavior of common microar-
chitectural optimizations such as speculative load reordering
which technically violate formal architecture-level definitions. We
evaluate PipeCheck using a library of established litmus tests on
a set of open-source pipelines. Using PipeCheck, we were able to
validate the largest pipeline, the OpenSPARC T2, in just minutes.
We also identified a bug in the O3 pipeline of the gem5 simulator.

I. INTRODUCTION

Multicore processors rely on memory consistency models
to ensure the correctness of all inter-core communication
performed through shared memory spaces. Unfortunately, def-
initions of consistency models often suffer from a lack of
formalism, as they are often specified using natural language
instead of mathematical models. While ongoing work has
seen some success in formalizing memory models, such work
intentionally abstracts away the details of the microarchitecture
itself, rendering such models unable to describe how the
architectural requirements are actually enforced. In particular,
architecture-level models do not address the reordering im-
plications of instructions performing at multiple points in the
pipeline, and they do not always account for microarchitectural
realities such as speculative load reordering that technically
violate the formal reordering rules [14].

We present PipeCheck, a formal methodology for verifying
that a given microarchitecture meets the specifications of a
given architectural consistency model. PipeCheck first defines
within a pipeline a set of locations (e.g., stages) at which
one can make local declarations about the ordering of mem-
ory instructions passing through that location. Given these,
PipeCheck constructs a global graph of “microarchitecturally

happens before” (µhb) edges. Our work is the first to apply
state-of-the-art consistency model analysis techniques to the
microarchitecture level. PipeCheck verifies that each ordering
edge that must be preserved according to the architectural
consistency model (e.g., each Store→Store ordering for Total
Store Ordering (TSO)) is in fact provably maintained by the
microarchitecture. As a result, PipeCheck reduces the problem
of verifying consistency model implementation correctness
to the more tractable problem of verifying local reordering
properties at various points in the microarchitecture.

We implement PipeCheck using Coq [46], a proof verifica-
tion assistant, to make our code amenable to formal analysis
and for easier integration with existing architecture-level mod-
els [3]. We then use built-in Coq functionality to automatically
extract the computational portion into a standalone automated
OCaml tool.

Our contributions are as follows:

• We are the first to develop an automated methodology
and tool, PipeCheck, in which a given microarchitecture
can be validated against its architecture-level consistency
model specification. In particular, PipeCheck defines
“preserved program order” as a proposition to be proven
rather than merely as an architectural assumption.

• PipeCheck calculates if the consistency model imple-
mented by a pipeline is weaker than, equal to, or stronger
than its architectural consistency model.

• PipeCheck verifies microarchitectural optimizations such
as speculative load reordering which, although in
widespread use, technically violate existing formal
architecture-level consistency model specifications.

• We reconcile our results with existing architecture-level
analyses, including a large body of litmus tests.

• We use PipeCheck both to verify the correctness of the
OpenSPARC T2 processor with respect to its consistency
model and to find a bug in the implementation of the
gem5 O3 simulated pipeline. Both analyses are able to
run to completion in just minutes.

The rest of the paper is organized as follows. Section II
describes a motivating example. Section III gives background
on architecture-level models, while Section IV describes
the PipeCheck microarchitecture-level approach. Our analy-
sis methodology and tool flow is described in Section V.
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Core 0 Core 1
(i1) [x] ← 1 (i3) r1 ← [y]
(i2) [y] ← 1 (i4) r2 ← [x]
Under TSO: Forbid? r1=1, r2=0

(a) Litmus Test Code
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(b) Architecture-level analysis of one possible execution [3]. Note
the presence of a cycle, indicating that this execution is forbidden.
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(c) PipeCheck eliminates ppo as an assumption, and instead checks
that it is replaced by calculated edge(s). In this example, the gray
highlighted edges replace the ppo edges and complete a cycle.

Arrow Edge Type
Intra-Instruction
Intra-Location

Non-Local
po/ppoarch

acts as ppoµarch
rf, fr, ws

Fig. 1: Load→Load and Store→Store ordering litmus test
iwp2.1/amd1/mp.

Sections VI and VII highlight important case studies and
summarize overall results, respectively. Finally, Section VIII
describes related work, and Section IX concludes.

II. MOTIVATING EXAMPLE

We begin with a brief summary of existing architecture-
level modeling techniques, the gaps in these analyses, and an
example of how PipeCheck fills in those gaps.

A. Architecture-Level Analysis

Formal architecture-level hardware models [3, 37] (and
software models, e.g., in C/C++11 [28, 29]) generally rep-
resent each program as a graph in which vertices represent
memory instructions in the program. Edges between these
vertices represent ordering relationships between the source
and destination of the edge: an edge from an instruction s
to another instruction d indicates that s happens before d, in
some formal sense defined by the model.

Figure 1a gives an example architectural analysis of a litmus
test named in different sources as iwp2.1, amd1, or mp. A
litmus test is a program written for the purpose of testing a
consistency model. This particular test asks whether there is
some execution of the two threads that produces the result
r1=1 and r2=0 on a processor following the TSO consistency
model. All memory locations are assumed to hold the value

0 originally. If the pipeline were sequentially consistent, this
would be equivalent to asking whether there were such an
interleaving of the threads. However, for performance reasons,
most modern processors use more permissive consistency
models that allow for instruction reordering, cores reading
writes early, and so on. As a result, interleaving analysis is
not sufficient.

Broadly, we can classify “happens before” edges into two
groups that subsequent sections will address separately [24].
The first consists of static edges: those derived from the
program itself. This includes preserved program order and
fence edges (see Sec. III). The second class, observed edges,
are those observed during a particular execution. As a given
program may have multiple legal executions, there will gen-
erally be many possible graphs for a given program, and each
graph will have its own set of observed edges. The model
developed by Alglave [3] highlights three types of observed
edge (s, d), which we summarize here (informally):

• “reads from” (rf): if d reads from s, then s must happen
before d, from at least some points of view

• “write serialization” or “coherence order” (ws): s comes
before d in the (assumed) total ordering of all memory
instructions accessing a given location, from the point of
view of the memory hierarchy

• “from reads” or “reads before” (fr): s is a read that gets
its value from a write that comes before d in the set of
ws edges

To calculate the edges in Figure 1b, one can work backwards
from the proposed result. Since r1 is hypothesized to hold the
value 1, instruction (i3) must have read the value written by in-
struction (i2). Hence, (i2) must have happened before (i3). This
establishes the “reads from” (rf) edge in Figure 1b. Similarly,
(i4) must have happened before (i1), because otherwise (i4)
would also have returned the value 1. This translates into the
“from reads” (fr) edge in Figure 1b. At the architecture level,
TSO itself guarantees the two “preserved program order” (ppo)
constraints shown in the graph to indicate that Load→Load
and Store→Store orderings within a thread must both be
preserved. Now, given these four edges, there is a cycle in the
ordering graph of memory instructions in Figure 1b. Such a
cycle indicates that an instruction can somehow happen before
itself. Since this is clearly impossible, the execution is ruled
out. In other words, the proposed outcome r1=1 and r2=0 is
in fact forbidden under TSO.

B. Microarchitecture-Level Analysis: PipeCheck

The analysis in Figure 1b says nothing about the behavior
of any individual microarchitectural implementation of that
architecture. On one hand, certain architecturally-permitted
behaviors may not be observable on a given microarchitecture.
For example, a sequentially consistent (SC) pipeline is a
valid implementation of a TSO architecture, although many
executions that are legal under TSO will not be observable
in such a pipeline—the microarchitectural memory model is
stricter than the architecture requires. On the other hand,
architecturally-forbidden behaviors may be observable on a
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Fig. 2: Classic Five-Stage RISC Pipeline plus a store buffer
and an unordered memory system. This pipeline example
recurs throughout this paper.

given microarchitecture—this would correspond to a bug in
the implementation. In this case, the microarchitecture is
erroneously weaker than the architecture requires.

As a running example of a microarchitecture, we will use
the classic RISC five-stage pipeline, augmented with a store
buffer, as shown in Figure 2. For clarity, we assume here that
this microarchitecture has no cache; in later sections we will
describe how to model cache behavior in pipelines for which
consistency and coherence are interdependent. Furthermore, in
this example we assume an unordered memory system. This
highlights an important point: even for an in-order pipeline, the
presence of an unordered network and/or memory hierarchy
can reorder memory accesses from the point of view of other
processors. As a result, PipeCheck must also account for
such behavior. Although we use a simple example here to
build intuition, we verify more complex processors, including
OpenSPARC T2, later in the paper.

Figure 1c shows the edges from Figure 1b as translated into
the PipeCheck model of the microarchitecture of Figure 2.
The four memory operations, (i1), (i2), (i3), and (i4), are
depicted from left to right, and various stages in the mi-
croarchitecture are shown from top to bottom. Specifically,
each vertex corresponds not just to a memory instruction, but
also to a particular location within the pipeline or memory
system. Each column of vertices therefore corresponds to that
instruction progressing through the various locations in the
microarchitecture. The various edge types will be described
in detail in later sections.

While ws edges are defined with respect to main memory,
PipeCheck maps the endpoints of rf and fr edges to the
points in the pipeline at which the instructions can be consid-
ered to have performed with respect to the core at the other
endpoint. Traditionally, a store from core i is said to have
performed with respect to core j when a load of the same
address issued by core j returns the value written by the store
(or by some subsequent store) [19, 40]. A load from core
i has performed with respect to core j when a subsequent
store from core j to the same address cannot affect the value
returned by the load. A store or a load has performed globally
when it has performed with respect to all cores. More recent
studies, however, have criticized this definition as being too
hypothetical for formal analysis [4, 35].

From a microarchitectural point of view, Section IV-A
will therefore unambiguously define “perform” in terms of
locations in the pipeline. Continuing the example, the rf edge
from (i2.MemHierarchy) to (i3.MemoryStage) indicates that
instruction (i2) must have performed with respect to core 1
(i.e., been written back from core 0 to the memory hierarchy)
before instruction (i3) performs with respect to core 0 (i.e.,
reads memory from the Memory stage of the core 1 pipeline).

In contrast, we treat ppo edges as propositions rather
than assumptions: we want to check that a pipeline properly
maintains these edges, rather than simply assuming their
presence. In fact, we consider ppo edges to be merely some
orderings that must be guaranteed among many orderings
that are guaranteed at various locations within a pipeline.
In Figure 1c, we draw (in dashed green) orderings that
are maintained at each location; this calculation will be the
focus of Section IV. In this particular example, with an in-
order pipeline, each pipeline stage maintains at its output the
instruction ordering it observes at its input. This results in
the po orderings being maintained throughout the pipeline,
with the exception of writes sent to memory. The ordering
of stores at the memory hierarchy is instead maintained by
the store buffer via the diagonal edge from (i1).Completed to
(i2).StoreBuffer—a detail we will come back to later.

Consider the ppo edges that were part of the cycle in Fig-
ure 1b. While their presence was assumed in the architecture-
level analysis, PipeCheck does not assume them; it checks
for them. The ppo edge from (i1) to (i2) is enforced by
a sequence of three microarchitecture-level “happens before”
edges, as shown highlighted in gray in Figure 1c. The ppo
edge from (i3) to (i4) is enforced by a single microarchitecture-
level edge. Together with the observed microarchitecture-level
rf and fr, the union of the highlighted edges forms the
microarchitecture-level equivalent of the cycle in Figure 1b.
Thus, at least for this particular example, the ppo edges
are correctly maintained, and hence the pipeline correctly
implements the TSO restrictions on this litmus test. While
this example covers only one test, later sections will describe
the process of fully verifying all possible orderings.

III. BACKGROUND: ARCHITECTURAL ANALYSIS

To verify a microarchitectural implementation, we must
first formally define the requirements of the architecture-level
consistency model against which the microarchitecture will be
verified. In this section, we survey existing work and describe
how PipeCheck models the architecture-level specification.

Preserved Program Order. Preserved program order
defines the set of reorderings guaranteed by the architecture
not to occur, based on the types of the accesses. Industry
specifications often present this information in the form of
a large table like Figure 3a. (See also Table 7.3 of [9],
Table 9.2 of [36], or Sec. 8.2.2 of [26].) For simplicity,
as in other memory consistency studies, we omit “non-
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Store N (mfence) Y ...

... ... ... ...

(a) Preserved Program Order (PPO). The fence in parentheses indi-
cates the fence type used to restore the otherwise-missing ordering.

Subset of Program Order Locally Remotely
Program Order & same address Y N

Preserved Program Order N Y

(b) Architecturally-Required Orderings

Property Value
Read own writes early Permitted

Read other cores’ writes early Forbidden

(c) Other Properties

Fig. 3: Definition of TSO. Atomics/fence types may vary.

standard”1 reads and writes in this paper, leaving four cases to
consider: Load→Load reorderings, Load→Store reorderings,
Store→Load reorderings, and Store→Store reorderings. The
PipeCheck approach of considering ppo edges as propositions
rather than assumptions is described in Section IV-D.

Uniprocessor Orderings. Cores may reorder local opera-
tions freely as long as the architecturally-observable behavior
maintains correct single-thread semantics. In particular, from
the point of view of the issuing core, accesses to different
addresses are considered entirely independent. Accesses to
the same address must perform locally in order, but they
need not always be enforced from the point of view of other
processors. This property is tested explicitly by permitting the
proposed outcome in the n7 litmus test [37]. These same-
location program ordering properties, which we refer to as
po-loc [3], are summarized in Figure 3b. The PipeCheck
approach to verifying po-loc is described in Section IV-D.

Dependencies. Certain subsets of program order are con-
sidered to contain dependencies between instructions. Some
architectures distinguish between address, control, and data
dependencies for architectures on which it matters [7, 8, 33,
39]. Other studies abstract away the details of dependencies,
instead either considering them to be architecture-independent
or instantiating more precise definitions later on a case-by-
case basis [3]. Dependency orderings are currently enforced in
PipeCheck through explicit microarchitectural rules, allowing
for easy adaptation to any particular instantiation.

Reading Writes Early. Many non-SC models allow a pro-
cessor to read its own and/or other processors’ writes “early”,
i.e., “before the write has been committed to memory”. For
example, TSO cores may read only their own writes early,
but may not read other cores’ writes early. Sarkar et al.
model this behavior through partial coherence operations and
explicit intra-core forwarding rules [39]. Alglave formalizes
it by describing the subset of “reads from” edges which are
excluded from the global “happens before” consensus [3].

1E.g., for space and clarity reasons, for x86, we do not consider non-
cacheable reads, write-combining accesses, etc., as these are not used in most
user-level code. Atomics are considered separately in Section III.

PipeCheck handles this situation by defining multiple per-
forming locations (Section IV-A), thereby causing writes to
perform with respect to different cores at different locations
within a pipeline.

Atomic Operations and Memory Fences. Essentially all
modern processors provide native atomic and fence operations
for the purpose of making inter-core synchronization practical.
Details vary by architecture, even among those with otherwise
similar consistency models. In this paper, for clarity and due to
space constraints, we do not aim to describe all possible atomic
operations or fences. We instead describe the implementation
of a Store→Load fence in Section VI-C, and we leave the
analysis of other possibilities for future surveys.

IV. PIPECHECK MICROARCHITECTURE-LEVEL ANALYSIS

A central observation of PipeCheck is that orderings be-
tween instructions are often too complicated to be captured by
a single architecture-level “happens before” edge. A single pair
of instructions may fetch in order, issue out of order, execute
in order, commit in order, and perform globally out of order.
Restricting “happens before” edges to specify only orderings
with respect to the memory hierarchy ignores all of the other
important memory orderings that take place within the pipeline
itself. PipeCheck therefore defines “microarchitecturally hap-
pens before” (µhb) edges to specify both an instruction and a
particular location within the pipeline:

Definition 1 (Microarchitecturally Happens Before). The
µhb graph is a directed graph (V,E) in which each ver-
tex (inst.loc) ∈ V represents a memory instruction inst
passing through a particular location loc, and each edge
(insti.loca, instj , locb) represents a guarantee that instruc-
tion insti passes through location loca before instruction
instj passes through location locb.

Throughout this paper, we depict µhb graphs in a grid,
as in Figure 1c, with instructions along the x-axis and mi-
croarchitectural locations along the y-axis. Not all instructions
pass through all locations (e.g., loads do not occupy the
store buffer), and so some entries in the grid are left empty.
Despite the grid depiction, only relationships depicted by
arrows provide any ordering guarantee.

A. Microarchitecture Definition

In PipeCheck, a microarchitecture is defined by:
• A list of the locations of interest in the microarchitecture
• Legal path(s) per instruction type.
• Performing locations within each path
• The local reordering guarantee at each location
• Non-local edges, i.e., edges which are both inter-

instruction and inter-location
These terms are more carefully defined below.

During execution, as instructions flow through the pipeline,
they pass through the chosen locations along some well-
defined path. A memory instruction may have more than
one legal path through a pipeline, depending on the type of
instruction, the state of the pipeline, and/or the state of the
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memory system during execution. For example, a read may
take a different path depending on whether it performs by
reading from the store buffer, from the cache via a cache hit,
or from the cache after a cache miss.

Each path also defines the set of locations at which each
instruction can perform. PipeCheck defines “perform” in terms
of location rather than potential visibility, maintaining the
intention of the traditional definition given in Section II-B
while removing its hypothetical nature:

Definition 2 (Performing Location). A location l is a perform-
ing location with respect to core c if:

• a load at location l can read the value written by a store
from core c

• the data being written by a store at location l is visible
to core c.

A location l is a global performing location if it is a performing
location with respect to all cores.

This definition also addresses the open question of
how/whether a load from one core can be said to “happen
before” a read from another core. For example, A-cumulativity
is a Power architecture [25] concept that instructions from
any core that have performed with respect to core i before a
fence is executed by core i are ordered by that fence. Previous
architecture-level studies [4, 35] were unable to formalize this
notion, as they did not consider cores to observe reads from
other cores. In PipeCheck, this would simply correspond to
the presence or absence of the relevant µhb edge.

To more carefully define “in order” and “out of order”
sections of a pipeline, we define a local reordering guarantee
at each location. This specifies the reorderings that location
does or does not permit on instructions passing through it.
At one extreme, a FIFO local reordering specifies that all
inter-instruction orderings guaranteed at entry into a location
will also be guaranteed leaving that location. At the other
extreme, a NoGuarantees local reordering specifies that no
orderings are guaranteed for instructions leaving the location.
Other guarantees may lie in between. The specific guarantees
of each pipeline stage will vary from processor to processor.

Table I shows the PipeCheck definition of the classic RISC
pipeline of Figure 2. The rows of the table are microarchi-
tectural locations defined by the properties in the first four
columns. The last three columns define the possible paths
each class of instructions can take through the pipeline: each
path passes through the microarchitectural locations indicated
by the “Y” entries. The definition explicitly defines the local
reordering guarantees at each location, as well as a set of
non-local edges specific to the store buffer. The list of paths
also clearly defines the set of locations at which each memory
instruction performs with respect to other cores (the L and G
superscripts), as determined by the sets of physical wires in the
implementation. Note that these performing locations are the
locations chosen to be the endpoints of the rf and fr edges
of Figure 1c. Given a microarchitecture definition of this form,
and given a program binary, PipeCheck can directly calculate

Location Definitions Path Defs.

# Location Local Reord. NLE Load StoreGuarantee M S
0 Fetch FIFO - Y Y Y
1 Decode FIFO - Y Y Y
2 Execute FIFO - Y Y Y
3 Memory FIFO - YG YG YL

4 Writeback FIFO - Y Y Y
5 Store Buffer FIFO SB Y
6 Mem. Hierarchy NoGuarantees - YG

7 Completed - - Y
L: local performing location. G: global performing location.
Load-M: path in which load reads from memory.
Load-S: path in which load reads from the store buffer.
SB: only one store can be outstanding from the store buffer at a

time: for all stores s, for the immediately subsequent store s′,
(s.Completed) µhb−−−→ (s′.StoreBuffer).

TABLE I: PipeCheck definition of the Five-Stage RISC
Pipeline of Figure 2. “NLE” means non-local edges.

Algorithm 1 Generating a µhb graph: StaticEdges
Graphsµhb,SE = ∅
Scenarios = CrossProduct(Paths[inst0], . . . , Paths[instn])
for all ScenarioPaths ∈ Scenarios do

for all insti do // Intra-Instruction Edges
for all 0 ≤ j < len(ScenarioPath[insti])− 1 do
Gµhb,SE = Gµhb,SE ∪ {(insti.ScenarioPath[insti][j],
insti.ScenarioPath[insti][j + 1])}

for all insti, i > 0 do // Program Order
if core(insti−1) = core(insti) then
Gµhb,SE = Gµhb,SE ∪ {(insti−1.F etch, insti.F etch)}

for all locb do // Intra-Location Edges
for all loca < locb do
Gb = ∅
if (insti.loca, instj .loca) ∈ Gµhb,SE ∧
(insti.loca, insti.locb) ∈ Gµhb,SE ∧
(instj .loca, instj .locb) ∈ Gµhb,SE then
Gb = Gb ∪ (insti.locb, instj .locb).

Gµhb,SE = Gµhb,SE∪
{LocalReorderingGuarantees(Gb)}

for all loca do // Per-Location Non-Local Edges
Gµhb,SE = Gµhb,SE ∪NonLocalEdges(loca)

Graphsµhb,SE = Graphsµhb,SE ∪ {Gµhb,SE}
return Graphsµhb,SE

the complete set of static edges in the µhb graph as described
in the next section.

B. Generating µhb Graphs

Static Edges. Algorithm 1 gives the full procedure for
generating the static edges (as defined in Section II) in a
µhb graph. We begin by adding a set of intra-instruction µhb
edges between consecutive locations along the path for that
instruction. For example, an instruction being in the fetch stage
will “microarchitecturally happen before” the point when that
same instruction is in the decode stage. These are the solid
black vertical arrows in Figure 1c.

Second, each location observes instructions passing through
in some order. For example, we assume program order to be
the ordering of instructions at the fetch stage of the pipeline.
Some subsequent pipeline stages also guarantee to maintain
intra-location ordering guarantees from previous stages. We
add intra-location µhb edges to represent these per-location

47th Annual IEEE/ACM International Symposium on Microarchitecture, 2014



Algorithm 2 Generating a µhb graph: ObservedEdges
WS = ∅. RF = ∅. FR = ∅.
for all addr do // Write Serialization

for all i ∈ AllInterleavings(Stores(addr)) do
for all instj , instj+1 ∈ i do
WS[addr][i] =WS[addr][i]∪
{(instj .MemHierarchy, instj+1.MemHierarchy)}

for all instj ∈ Loads do // Reads-from
RF [insti] = ∅
for all insti ∈ Stores such that addr(insti) = addr(instj)
and data(insti) = data(instj) do

for all loca ∈ path[insti] such that loca performs with
respect to core(instj) do

for all locb ∈ path[instj ] such that locb performs with
respect to core(insti) do
RF [insti] = RF [insti] ∪ {(insti.loca, instj .locb)}

Graphsµhb = {Gµhb,SE ∪ e, ∀e ∈ CrossProduct(
WS[addr0], . . . ,WS[addrm], RF [inst0], . . . , RF [instn])}

for all G ∈ Graphs do // From-reads
for all (insti.loca, instj .locb) ∈ rf(G) do

for all instk such that (insti, instk) ∈ ws(G) do
for all locb ∈ path[instj ] such that locb performs with
respect to core(instk) do

for all locc ∈ path[instk] such that locc performs
with respect to core(instj) do
G = G ∪ {(instj .locb, instk.locc)}

return Graphsµhb

guarantees. These are the dashed green horizontal arrows
in Figure 1. When the ordering at a location cannot be
guaranteed, no such µhb edges can be drawn.

Third, we use additional non-local (i.e., inter-location and
inter-instruction) µhb edges to model any ordering guarantees
implemented by the pipeline across multiple instructions and
locations. Such non-local µhb edges are relatively rarer; they
correspond to non-local wires and/or communication across a
chip, making them expensive in practice. However, they often
do serve to enforce critical ordering guarantees. An example
of such a non-local edge would exist in store buffers that
enforce that “after issuing a request to memory, the store buffer
must await an acknowledgment from memory before issuing
a subsequent request”. This is the diagonal dashed green edge
from (i1).Completed to (i2).StoreBuffer in Figure 1c.

Observed Edges. In architecture-level models, each ob-
served edge is defined to exist between certain pairs of mem-
ory instructions, but these edges are not specified to correspond
to any particular locations within the pipeline. PipeCheck
defines the endpoints of observed edges to be at the performing
location(s) (Sec. IV-A) of each instruction’s path. When there
is more than one possibility, (e.g., a load can read either from
the store buffer or from memory), PipeCheck exhaustively
enumerates all cases and considers them separately.

The algorithm for enumerating all possible sets of execu-
tions (i.e., all sets of observed edges for a given program) is
shown in Algorithm 2. PipeCheck first calculates all possible
serializations of write instructions at the memory hierarchy
(WS[addr] for each address) and calculates all writes (or the
initial value) of the same address and value that each read
may have read from (RF[inst] for each instruction). It then
takes the cross product of these to fully enumerate the set of

Core 0 Core 1
(i1) [x] ← 1 (i4) [y] ← 1
(i2) r1 ← [x] (i5) r3 ← [y]
(i3) r2 ← [y] (i6) r4 ← [x]
Allow: r1=1, r2=0, r3=1, r4=0

(a) Litmus test iwp2.4/amd9

(i1) (i2) (i3) (i4) (i5) (i6)
rflocal

ppo fr rflocal
ppo

fr

(b) Architecture-level analysis.

po po po po
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(i1) (i2) (i3) (i4) (i5) (i6)

(c) µhb graph for the five-stage RISC microarchitecture.

Fig. 4: Analyzing litmus test iwp2.4/amd9.

µhb graphs required to analyze the given program. Finally,
for each case, it uses the rf and ws edges to calculate the
microarchitectural fr edges for that scenario.

Enumeration of all ws possibilities is necessary for correct-
ness. As demonstrated by litmus test n5 [37], if ws edges
are not enumerated, then the fr edges that form the cycles
that forbid the result are not generated, as their presence is
calculated depending on ws. As a result, we hypothesize that
there is a total order on instructions passing through every
location in each core, and that this order needs to be fully
enumerated at points at which paths from different cores
are merged. Although our approach is general, the results
of Section VII focus on TSO processors, which (due to
multi-copy atomicity) have only one join point—the memory
hierarchy. Our total order hypothesis therefore corresponds
exactly to existing architecture-level definitions of ws [3, 7, 8].
More generally, weakly-ordered cores may have multiple join
points (e.g., store buffers shared by some but not all cores),
and so our hypothesis would require enumeration of ordering
possibilities besides just ws.

C. Transitivity of µhb Edges

A major benefit of PipeCheck’s µhb graphs over
architecture-level approaches is that it avoids the problem
faced by these existing models that certain edges need to be
treated specially. For example, Figure 4a shows a litmus test
which demonstrates that the presence of store buffering can
be observed by software. Despite this reality, Figure 4b shows
that architecture-level analysis would produce a cyclic graph.
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Algorithm 3 ppo/po-loc Satisfaction Tests
for all (insti, instj) ∈ ppoarch do
Graphsµhb,SE = StaticEdges(insti, instj) // Alg. 1
Graphsµhb = {ObservedEdges(Gµhb,SE),

∀Gµhb,SE ∈ Graphsµhb,SE} // Alg. 2
for all Gµhb ∈ Graphsµhb do

if cyclic(Gµhb) ∨ (s, d) ∈ G+
µhb then // +: Trans. Clsr.

continue
if LegalOptimization(Gµhb, (s, d)) then // Sec. IV-E

continue
return FAIL

return PASS

Algorithm 4 Litmus Tests
Graphsµhb,SE = StaticEdges(insti, instj) // Alg. 1
Graphsµhb = {ObservedEdges(Gµhb,SE),

∀Gµhb,SE ∈ Graphsµhb,SE} // Alg. 2
obs = NOT OBSERVABLE
for all Gµhb ∈ Graphsµhb do

if acyclic(Gµhb) then
obs = OBSERVABLE
break

if exp = PERMITTED ∧ obs = NOT OBSERVABLE then
return PASS // Pipeline stricter than necessary

else if exp = FORBIDDEN ∧ obs = OBSERVABLE then
return FAIL // Pipeline bug

else
return PASS // Matches expected outcome

Although a cycle may seem to forbid the observable outcome,
as an instruction cannot happen before itself, Alglave [3]
considers only cycles formed entirely of global edges to forbid
an outcome; rflocal edges are ignored for this purpose. Later
improvements by Alglave refine this local vs. global distinction
to check for acyclicity or irreflexivity of various subsets of the
graph [8], but in no case can all edges be treated equally.

Figure 4c depicts the PipeCheck approach. With the extra
location information in the graph, rflocal and rfglobal map to
distinct but equal-strength edges. In this graph, it is clear that
while the µhb equivalents of the rfglobal edges still create a
cycle, the equivalents of the rflocal edges do not. Neither µhb
edge requires special treatment.

As a consequence of this strength equality, it is legal to
take the transitive closure of µhb edges. At the microarchi-
tecture level, transitivity is respected because each µhb edge
represents either a local ordering at a particular microarchi-
tectural location or a communicated message (i.e., a Lamport
clock [31] “happens before”). Similarly, just as architecture-
level cycles do not imply microarchitecture-level cycles in Fig-
ure 4, causality (if A causes B, and core i observes B, then it
must have observed A) is not a consequence of µhb transitivity.
This is verified by the rwc (read-write causality) litmus test in
Section VII. In particular, this ensures that PipeCheck supports
non-causal architectures (e.g., Power [25]).

D. Verification Flow

This section presents two ways in which µhb graphs can be
used to verify the correctness of a pipeline implementation.

ppo/po-loc Satisfaction Tests. As described in Section III,
PipeCheck treats ppo and po-loc edges as propositions
rather than assumptions. To verify whether these edges are
satisfied by µhb edges (or a legal microarchitectural optimiza-
tion described in Section IV-E), PipeCheck enumerates the full
set of possible µhb graphs for each pair of instructions that
the architectural specification requires be preserved. As shown
in Algorithm 3, PipeCheck ensures that each ppo or po-loc
edge is present in the transitive closure of each µhb graph.

Litmus tests. Litmus tests are a standard tool used by
a large body of related work on consistency models. As
we have already described, they are (usually very short)
programs designed to test particular rules or subcases for a
consistency model. Given a program, they state whether a
proposed outcome is permitted or forbidden under the rules
of the model. The program can then be executed on a given
microarchitecture, and the proposed outcome may or may not
then be observed. A permitted but unobserved outcome may
mean that the pipeline is stronger than strictly necessary, but it
may also simply mean that the execution produced a different
legal outcome. A forbidden but observed outcome, however,
indicates either a pipeline bug or an incorrect specification.
Algorithm 4 presents the complete procedure for checking
litmus tests.

Due to the inherent complexity of defining even simple
consistency models and/or due to incomplete or even incorrect
documentation, even programs as short as five or six instruc-
tions (e.g., amd6/iriw [14], n4/n5/n6 [37], A-cumulativity
tests [4], coRSDWI/mp+dmb+fri-rfi-ctrlisb [8]) can
be very difficult to analyze properly. An important sanity check
is therefore to verify that our analyses match both behaviors
described formally in previous work as well as those observed
on real processors.

Runtime. The number of graphs each algorithm enumerates
varies with the number of instructions in the test and the size
of each pipeline. While potentially exponential in the worst
case, the absolute numbers for each quantity are very small:
long pipelines contain just dozens of stages, and the longest
litmus test of the suite we survey contains eight instructions.
Furthermore, the algorithm can terminate early if it finds
an observable outcome. Finally, the graph checking can be
trivially parallelized. This ensures that PipeCheck remains
feasible and fast in practice. Section VII will confirm this by
measuring both the number of enumerated graphs per test, as
well as the total runtime for each test.

E. Discussion: Advanced Techniques

Many microarchitectures use various forms of speculation
to improve performance. PipeCheck models this simply by
not including incorrectly-speculated events in µhb graphs.
If a squashed instruction is replayed, then that replay will
be included (unless it is itself squashed). If a squashed
instruction is not replayed, then it simply does not appear.
Squashes also imply µhb behavior. For example, if execu-
tion of insta squashes a speculatively-executed instb, then
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Fig. 5: PipeCheck block diagram and toolflow. Increasing line
widths represent enumerations of new cases.

Pipeline Lines # Locations # Paths
of code (c: # cores) Ld St

RISC 5-Stage (w/o SB) 37 5c 1 1
RISC 5-Stage (Tab. I) 62 6c+ 2 2 1

gem5 O3 (Tab. III) 106 9c+ 2 2 1
OpenSPARC T2 115 14c+ 1 3 1

TABLE II: Microarchitectures analyzed in this paper. “# Lo-
cations” means the number of locations/stages in the modeled
pipeline. “# Paths” indicates the number of possible paths each
instruction type can take through the pipeline.

(insta.Execute)
µhb−−→ (instb.F etch). The WeeFence [18]

example of Section VI-C will discuss such a case in detail.
Many modern pipelines are also superscalar. This can be

modeled in PipeCheck by simply treating each location with
multiple lanes as multiple locations. Alternatively, one could
assign an arbitrary priority between lanes sharing a location
to resolve ties, or one could even imagine µhb edges which
indicate “happens before or at the same time as”. For space
reasons, we leave a more detailed description for future work.

Finally, some pipelines use microarchitectural optimizations
which are considered legal, but which nevertheless violate
the “must happen before” requirements of ppo. To legal-
ize such optimizations, in these cases PipeCheck necessarily
permits a ppo proposition to be satisfied by a condition
other than simply “microarchitecturally happens before”. Sec-
tion VI will use PipeCheck to analyze two examples: one
which relaxes Load→Load ordering (speculative load reorder-
ing [20]), and one which relaxes Store→mfence→Load
orderings (WeeFence [18]).

V. TOOL FLOW AND METHODOLOGY

The PipeCheck tool flow is depicted in Figure 5. PipeCheck
is written using Coq [46], an interactive theorem prover, to
make the code easily amenable to formal analysis and integra-
tion with existing open-source analysis frameworks also using
Coq [3]. To speed up the analysis, we use built-in functionality

Location Definitions Path Defs.
# Location Local Reord. NLE Load Store
0 Fetch FIFO - Y Y
1 Decode FIFO - Y Y
2 Rename FIFO - Y YL

3 Issue NoGuarantees Dep Y Y
4 Execute NoGuarantees S0-S2 YG Y
5 Cache Line Inv. NoGuarantees -
6 Writeback NoGuarantees - Y Y
7 Commit RestoreOrderAt 2 - Y Y
8 Store Buffer FIFO SB Y
9 Mem. Hierarchy NoGuarantees - YG

10 Completed - - Y
L: local performing location. G: global performing location.
Dep: dependencies are enforced at the issue queue: for all loads l, for

subsequent dependent instructions i, (l.Execute) µhb−−−→ (i.Issue).
S0: loads execute before the cache line they read is invalidated: for

all loads l, (s.Execute) µhb−−−→ (s.CacheLineInvalidate).
S1: loads execute before the cache line read by any subsequent

load to the same address is invalidated: for all loads l, for
subsequent loads l′ to the same address, (s.Execute) µhb−−−→
(s′.CacheLineInvalidate).

S2: check for store-load violations (in MemDepUnit/StoreSet): for
all stores s, for subsequent loads l to the same address,
(s.Execute) µhb−−−→ (l.Execute).

SB: only one store can be outstanding from the store buffer at a
time: for all stores s, for the immediately subsequent store s′,
(s.Completed) µhb−−−→ (s′.StoreBuffer).

TABLE III: PipeCheck definition of the gem5 O3
Pipeline [13]. “NLE” means non-local edges.

within Coq to extract the computation into OCaml and then
compile this extracted code into a standalone binary.

To demonstrate the effectiveness of PipeCheck, we focus on
verification of processors implementing the TSO consistency
model. Weak memory models, such as those used by ARM
and Power processors, impose ordering requirements only due
to dependencies or at specialized synchronization points such
as fences, and due to space constraints we do not aim to survey
the wide variety of fence types used by different architectures.
TSO imposes non-trivial ordering requirements on all memory
operations, making verification of TSO a particularly interest-
ing target. Furthermore, its widespread use on x86 and other
platforms make its verification very important.

Table II summarizes the four microarchitectures we survey
in our results. The first two are the five-stage RISC pipeline of
Figure 2 both without and with a store buffer. The former is
effectively a sequentially-consistent core, meaning that some
of the litmus test outcomes permitted under TSO should not
be observable. These two microarchitectures reflect the size
of pipelines that might be used in classrooms or as small
embedded cores. The third is the gem5 O3 simulated pipeline
(v10013) [13]. This represents an average-sized core and
demonstrates how simulated cores are also amenable to anal-
ysis. Finally, we describe the OpenSPARC T2 pipeline, rep-
resenting a well-documented industry microarchitecture [44].

We analyze a comprehensive set of TSO litmus tests from
previous work [38]. Each litmus test was analyzed on a four
core version of each pipeline, as none of our tests required
more than four cores. We also analyze the set of ppo and
po-loc satisfaction tests (Section IV-D) for each pipeline.
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We execute the extracted OCaml code and collect timing
results using an Intel Xeon E3-1230 v2 server processor.

VI. CASE STUDIES

Having defined the PipeCheck methodology, we now
demonstrate its use by highlighting cases of particular interest.

A. Speculative load reordering

Many microarchitectures speculatively reorder load instruc-
tions for performance reasons [9, 20, 26, 43]. The key principle
is that two loads l1 and l2 in program order can be specula-
tively reordered (i.e., l2 can execute before l1) as long as the
value read speculatively by l2 is the same as it would have
been had l2 in fact performed after l1 (i.e., non-speculatively).
One implementation, as used by the gem5 O3 pipeline [13]
that we analyze in this paper, is to hook into the cache
coherence protocol. Namely, if a private cache line has not
been overwritten or invalidated (due to cache replacement or
an external invalidate request) since an earlier read of that line,
then the core can safely assert that a subsequent read of that
line would return the same value. On the other hand, if the
cache line is invalidated, the core is conservative and assumes
that the invalidate indicates a failed speculation.

This implementation of speculative load reordering can be
modeled in PipeCheck by including cache line invalidation as
a “location” within the model. Figure 6a shows an example
of PipeCheck’s use of this as applied to the gem5 O3 pipeline
model and to the depicted litmus test. Extra vertices have been
added to represent the invalidations of the cache lines that (i3)
and (i4) read from, and the observed edges in the graph have
been adjusted to account for these new vertices. In particular,
the cache line that (i4) reads from must have been invalidated
before (i1) wrote to memory to observe the proposed result.

PipeCheck uses this µhb graph to analyze the correctness of
speculative load reordering. This is an out-of-order pipeline, so
there is no sequence of edges guaranteeing ppoarch as there
was in Figure 1c. However, although a µhb version of this edge
would be sufficient, speculative load reordering proposes that
it is not strictly necessary. Should the processor guarantee that
the pposlr edge is enforced instead, this would be sufficient to
prevent the forbidden outcome from being observed regardless
of the presence of the ppoarch edge. As a result, the core can
safely realize the performance benefits of reordering (i3) and
(i4) as long as it enforces either ppoarch or pposlr.

B. Consistency Bug in gem5 O3 Pipeline

For the gem5 O3 pipeline as defined in Table III, our
PipeCheck results indicated that Load→Load ppo ordering
was not guaranteed, and that four of the litmus tests (including
iwp2.1/amd1/mp, shown in Figure 6b) failed validation.
These results could mean either that we omitted a critical set of
non-local edges in the PipeCheck definition of the pipeline, or
that PipeCheck had in fact found a bug in the implementation.
To analyze further, we wrote a microbenchmark to execute
iwp2.1/amd1/mp in a tight loop. With this, the software

was in fact able to observe the forbidden result, clearly
indicating that PipeCheck had found a bug.

While difficult to find without PipeCheck, the Load→Load
ordering bug is easily correctable in this case2. The pipeline
already does correctly implement Load→Load ordering in
some cases: it squashes and restarts the second of the two
reordered loads if the core sees an invalidate (as described in
Section VI-A) to the line read by the second load, but only if
the accesses are to the same address. Simply removing the sec-
ond condition is sufficient to restore correctness. Fortunately,
as actual ordering violations are relatively rare, we believe
this fix to result in only minimal performance changes in
practice. This case study demonstrates the ability of PipeCheck
to automatically find and identify very specific pipeline bugs
and/or missing guarantees in the specification of the pipeline.

C. WeeFence

Our third case study uses PipeCheck to verify the
correctness of WeeFence [18]. WeeFence proposes a
microarchitectural optimization to make enforcement of
Store→mfence→Load orderings cheap under TSO. Specif-
ically, they propose allowing post-fence loads to perform
and retire prior to the fence itself, thereby reducing latency.
We check that these continue to correctly enforce TSO in a
particular implementation.

Figure 6c demonstrates the use of PipeCheck to vali-
date the correctness of the WeeFence approach. Since their
technique is not specific to a particular implementation, we
apply it to the gem5 O3 pipeline model, as it allows out-
of-order execution. In their baseline microarchitecture, the
load may speculatively perform before the fence has retired,
similarly to Section VI-A, but it may not retire until after
the fence has retired. This in turn must happen after the
store has written back to memory. In other words, ordering
is enforced from (i1.MemHierarchy) to (i1.Completed) to
(i2.CommitStage) to (i3.CacheLineInvalidate), where the last
segment is enforced by squashing (i3) if necessary. They then
propose the optimization of buffering or bouncing invalidates
rather than monitoring for them, which in turn allows the
read to safely retire non-speculatively, even before the store
has written back to memory. This approach also enforces
(i1.MemHierarchy) µhb−−→(i3.CacheLineInvalidate), but without
the slow intermediate step of (i2.CommitStage), thereby saving
latency. This analysis demonstrates how PipeCheck can be
used to verify and then to demonstrate the correctness of a
microarchitectural optimization proposal.

VII. RESULTS ACROSS LITMUS TESTS

Table IV shows the results of verifying the suite of litmus
tests on each modeled pipeline. Individual litmus tests are
depicted as rows. For each row, the table shows whether TSO
forbids or permits the outcome proposed by the test, and then
shows its observability on the four microarchitectures con-
sidered. The microarchitecturally-observable behaviors corre-
spond with the architecturally-specified behaviors in almost all

2The bug was independently fixed in revision 10149
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(b) Pipeline bug shown via the
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(i2) [x] ← 2 (i4) r2 ← [x]
Under TSO: Forbid: r1=2, r2=1

Fig. 6: Case Studies of Section VI, all demonstrated using the gem5 O3 pipeline.
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Fig. 7: Number of graphs needed to verify each litmus test.

cases. For the RISC pipeline without a store buffer, six of the
proposed results require non-SC behavior, and these results are
confirmed as not being observable on the SC pipeline. On the
other hand, four of the test results reinforce the observability
of the gem5 pipeline bug discussed in Section VI-B.

Figure 7 shows the number of cases that needed to be
enumerated to verify each litmus test. Broadly, the “permitted”
cases require fewer graphs, as the enumeration can stop once
a single match is found. There are exceptions, however. The
n7 litmus test (described in Section III) checked 73 cases
on the OpenSPARC T2 before finding an ordering causing the
proposed result. Nonetheless, performance remains acceptable.
Should performance become an issue, heuristics and/or paral-
lelism could be employed to mitigate the cost.

At maximum, for test n4 on the OpenSPARC pipeline,
PipeCheck needed to check 288 cases (288 = 25 · 32). First,
n4 has 4 reads each taking one of either two or three possible
paths (hit, miss, store buffer forwarding if applicable) (22 ·32).

Second, two of the reads follow writes to the same address
from the same core, and hence they can return values either
from the store buffer or from memory (22). Finally, there are
two possible ws orderings (21).

Figure 8 shows the time taken to complete the verifica-
tion process for each pipeline. The total runtime is closely
correlated with the number of graphs per litmus test shown
in Figure 7. This runtime could be reduced even further by
parallelizing Algorithm 4, which takes 90% of the non-I/O
runtime of the current implementation. Nevertheless, the entire
suite runs in less than ten minutes for each pipeline, demon-
strating that even with code optimized for verifiability rather
than performance, the PipeCheck analysis is very practical.

VIII. RELATED WORK

Lamport first defined sequential consistency to be the
conditions that the result of an execution is the same as
some interleaving of the instructions from each thread, and
that the instructions from each thread remain in program
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Litmus Test TSO RISC RISC gem5 Open-
(exp.) (no SB) (w/SB) O3 SPARC

iwp2.1/amd1/mp F = = O2 =
iwp2.2/amd2/lb F = = = =
iwp2.3a/amd4/sb P N1 = = =

iwp2.3b P = = = =
iwp2.4/amd9 P N1 = = =

iwp2.5/amd8/wrc F = = O2 =
iwp2.6 F = = = =
amd3 P N1 = = =

amd6/iriw F = = O2 =
n1 P N1 = = =
n2 F = = O2 =
n4 F = = = =
n5 F = = = =
n6 P = = = =
n7 P N1 = = =
rwc P N1 = = =

1Implementation more restrictive than TSO requires.
2Indicates the presence of a bug. See Section VI-B.

TABLE IV: Summary of litmus test results. “F”: Forbid.
“P”: Permit. “=”: Matches expected TSO outcome. “O”: Ob-
servable. “N”: Not observable.

order [32]. Various hardware memory models have since been
developed, including weak memory ordering [19], processor
consistency [23] and release consistency [21], as well as indus-
trial models such as those used by Alpha [17], SPARC [43],
and PowerPC [16].

Shasha and Snir [41] and Collier [15] provided early frame-
works to analyze programs running on machines with mem-
ory models weaker than sequential consistency. Many other
studies (e.g.,) have since analyzed the process of restoring
sequential consistency given a weaker hardware model, but
these analyses typically remain at the architecture level and
above [6, 30]. Formal architecture-level models [11], including
those described in Section III, also apply similar graph-
theoretic techniques. Modern research into formal models can
broadly be classified into two groups: axiomatic models (from
industry [17, 27, 43] or academia [1, 3, 4, 7, 33, 48]) or
operational models [39], although researchers have been able
to demonstrate the equivalence of models of each type (e.g.,
for TSO [37], for Power [33], for generic models [8]).

To match the hardware models, academic studies into the
implications of non-sequentially consistent programming mod-
els led to the development of guarantees such as data-race
freedom (DRF) [2], which specified conditions under which
code executing under a weak memory model will nevertheless

behave in a sequentially consistent manner. Modern specifi-
cations for languages such as C11/C++11 [14, 28, 29] and
Java [34] define graphs with edges such as “synchronizes
with” or “sequenced before” that are in many ways analogous
to “happens before” edges in hardware models. With this,
researchers have also attempted to formalize the mappings of
software constructs such as mutexes or acquire/release atomics
into the set of primitives exposed by the architecture [6, 12].

Formal methods approaches have also been used for veri-
fying software correctness. Gibbons and Korach demonstrated
the NP-completeness of verifying sequential consistency [22].
Nevertheless, in practice many studies have been successful
through the use of model checking [5] and/or SAT solving [47]
and/or through formalization using proof assistants such as
Coq [46] or HOL [42].

Much of the effort in attempting to verify microarchitectural
implementations of consistency models has focused on creat-
ing and evaluating litmus tests [7, 8, 24, 39, 45], including
those described explicitly in vendor specifications [9, 10, 17,
25, 26, 43]. We are not aware of any previous attempts to
create microarchitecture-level “happens before” graphs, nor of
attempts to automate formal microarchitecture-level checking.

IX. CONCLUSION

We presented PipeCheck, a methodology and tool for ver-
ifying the correctness of a microarchitecture with respect to
its consistency model. PipeCheck demonstrates the practicality
and tractability of defining microarchitectures in terms of their
location-by-location ordering properties and then verifying the
correctness of their implementation of the given consistency
model. Our techniques complement other ongoing efforts to
verify the correctness of computation, from the programming
language level down to the microarchitecture. We hope that
in the future, PipeCheck will serve both as a framework
in which designers can define their microarchitectures and
as a tool by which they can verify the correctness of their
implementations. PipeCheck is open-source and is publicly
available at github.com/daniellustig/pipecheck.
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