
Check Quick Start

1 Getting Started

1.1 Downloads

The tools in the tutorial are distributed to work within VirtualBox. If you don’t already have Virtual Box
installed, please download VirtualBox from this link, and double-click the file to begin installation:

https://www.virtualbox.org

Figure 1: Closeup of icon for starting a terminal window.

Then, download our tutorial VM package from the link below, and double-click on the downloaded .ova
file, and then follow the dialog box (e.g. click “import”) to import it into Virtual Box:

http://check.cs.princeton.edu/tutorial_vm/Check_Tools_VM.ova

Once imported, a VirtualBox manager window should open up. Double-click the VM’s entry in the
sidebar of VirtualBox to start it. Once the instance is started, click on the small obscure terminal icon in
the upper-left corner (just to the right of ‘System’, as shown in Figure 3) to open a terminal window. The
remainder of the tutorial will involve navigating files and typing commands into the terminal window.

1.2 What’s in here?

In this distribution we have included:

• Fillable PipeCheck example SC microarchitecture
(~/pipecheck tutorial/uarches/SC fillable.uarch)

• Completed PipeCheck example SC microarchitecture
(~/pipecheck tutorial/uarches/solutions/SC.uarch)

• Fillable PipeCheck example for TSO microarchitecture.
(~/pipecheck tutorial/uarches/TSO fillable.uarch)

• Completed PipeCheck example for TSO microarchitecture
(~/pipecheck tutorial/uarches/solutions/TSO.uarch)

• TriCheck example for TSO microarchitecture

• Default compiler mappings file from C11 to that TSO microarchitecture

1

Predicate Returns True if...
DataFromInitialStateAtPA r load r reads from the initial state of the litmus test
DataFromFinalStateAtPA w store w writes a value equal to the final state of the litmus test (if a final

condition is specified)
HasDependency rel i1 i2 the litmus test specifies a relation rel from microop i1 to microop i2
IsAnyRead i microop i is a read
IsAnyWrite i microop i is a write
IsAnyFence f microop f is a fence
AccessType type i microop i is of access type ”type”
FenceType type f microop f has fence type ”type”
OnCore n i microop i is on core n, where n is an integer identifier
ProgramOrder i1 i2 microop i1 is before microop i2 in the program order
SameCore i1 i2 microops i1 and i2 are on the same core
SameData i1 i2 microops i1 and i2 read and/or write the same data value
SameMicroop i1 i microops i1 and i2 are the same microop
SamePhysicalAddress i1 i2 microops i1 and i2 access the same physical address
SameVirtualAddress i1 i2 microops i1 and i2 access the same virtual address
StageName n ”name” define stage with integer identifier n and a reference name

Table 1: Summary of µSpec predicate constructs (apart from node/edge-related predicates) for building
axioms and macros.

• Template-based litmus test generator for TriCheck-style C-to-ISA generation

• More than 50 litmus tests in the .test format
(~/pipecheck tutorial/tests/SC tests and ~/pipecheck tutorial/tests/TSO tests)

1.3 High-Level Directory Structure

From a terminal window, the PipeCheck portion of the tutorial can be reached by typing:

cd /home/check/pipecheck_tutorial/

Likewise, the TriCheck portion of the tutorial can be reached by typing:

cd ~/TriCheck

2 Glossary of µSpec predicates and primitives

2.1 Predicates

Table 1 summarizes the key predicate terminology used for most µSpec axioms and macros.

2.2 Primitives

Table 2 similarly summarizes the other µSpec primitives used to construct axioms and macros in a microar-
chitecture model.

3 How to write a uarch with µSpec

There are three major components of a µSpec microarchitecture definition:

• Stage identifier definitions

• Macros (optional)

• Axioms

2

Primitive Description
pA => pB predicate pA logically implies predicate pB
pA /\pB logical conjunction of predicates pA and pB
pA \/ pB logical disjunction of predicates pA and pB
˜p logical negation of predicate p
% <comment> uspec comment
c predefined to be the core ID
exists microop “var”,
<exists body> existential quantification
forall microop “var”,
<forall body> universal quantification
NodeExists ((i1, stage1))) the µhb node representing microop i1 in stage1 is present in

the µhb graph
NodesExist [(i1, stage1); (i2, stage2); ...] the µhb nodes representing microop i1 in stage 1, microop i2

in stage 2, etc. are present in the µhb graph.
EdgeExists ((i1, stage1), (i2, stage2)) a happens-before edge exists between microop i1 in stage1 and

microop i2 in stage2
EdgesExist [((i1, stage1), (i2, stage2)); ((i3, stage3),
(i4, stage4)); ...]

happens-before edges exist between microop i1 in stage1 and
microop i2 in stage2, as well as between microop i3 in stage3
and microop i4 in stage4, etc.

AddEdge ((i1, stage1), (i2, stage2), ”label12”) adds an edge starting at the node representing microop i1
in stage1 and ending at the node representing microop i2 in
stage2. Label is required, but may be empty (e.g., ””).

AddEdges [((i1, stage1), (i2, stage2), ”label12”); ((i3,
stage3), (i4, stage4), ”label34”); ...]

Similar to AddEdge, but used to add multiple edges with one
primitive.

Axiom “name”:
<axiom body>. defines an axiom with the specified reference name, where the

axiom body is comprised of predicates, quantifiers, connec-
tives, and/or macros.

CoreOf i returns the Core ID associated with microop i
DefineMacro “name”:
<macro body>. defines a macro with the specified reference name that can be

instantiated as part of an axiom. The macro body is comprised
of predicates, quantifiers, connectives, and/or macros.

ExpandMacro name expands macro with specified reference name

Table 2: Summary of other µSpec primitives for building axioms and macros.

3.1 Stage identifier definitions

Stage identifier definitions must come first in the microarchitecture, and define the various events that the
microarchitectural axioms operate on. Each stage identifier must be associated with a unique number used
by the solver backend. A stage identifier has the form:

StageName <unique number> "<name of stage>".

So for instance, to define Fetch, Execute, and Writeback stages for a microarchitecture, one could do:

StageName 0 "Fetch".

StageName 1 "Execute".

StageName 2 "Writeback".

3.2 Macro Definitions

Macros can be used to define µSpec fragments that can be included as part of an axiom. They are useful
for frequently used µSpec fragments as well as to break up large axioms into smaller components in the file.
The syntax of a macro definition is as follows:

DefineMacro "<macro name>":

<uSpec fragment>.

A macro expansion substitutes the text of the macro when called:

3

ExpandMacro <macro name>

For example, SC fillable.uarch breaks up its Read Values axiom into three macros (BeforeAllWrites,
No SameAddrWrites Btwn Src And Read, and Before Or After Every SameAddrWrite). The definition of
the BeforeAllWrites macro is:

DefineMacro "BeforeAllWrites":

DataFromInitialStateAtPA i /\

forall microop "w", (

(IsAnyWrite w /\ SamePhysicalAddress w i /\ ~SameMicroop i w) =>

AddEdge ((i, Execute), (w, (0, MemoryHierarchy)), "fr", "red")).

and the three macros are invoked in the Read Values axiom as shown below:

Axiom "Read_Values":

forall microops "i",

IsAnyRead i =>

(

ExpandMacro BeforeAllWrites

\/

(

ExpandMacro No_SameAddrWrites_Btwn_Src_And_Read

/\

ExpandMacro Before_Or_After_Every_SameAddrWrite

)

).

3.3 Axiom Definitions

Axiom syntax is very similar to macro syntax, but an axiom definition must specify a complete axiom rather
than just a µSpec fragment. So for instance, all variables used by the axiom must be defined in it (unlike in
the case of macros above). The µSpec axiom syntax is:

Axiom "<axiom name>":

<uSpec statement>.

4 How to write a litmus test

The Check framework uses a custom litmus test format that by convention uses the .test extension. This
format allows users to specify the common components of litmus tests (like instructions, data values, and
final conditions), but also allows users to specify information related to address translation and virtual mem-
ory, such as both the virtual and physical addresses for an instruction. The format of a litmus test is:

“Alternative”
<instructions>
<relationships>
<final conditions> (optional)
[“Alternative”
<instructions>
<relationships>
<final conditions> (optional)]*
<outcome>

Each Alternative above specifies an architecture-level execution of the litmus test that must be exam-
ined. A given Alternative specifies values for all loads and stores in the program, as well as any final

4

conditions that apply. At the end of the test, the outcome specifies whether the test should be allowed or
forbidden by the architecture specification. Note that this means that a separate .test file may be required
for each architecture-level memory model being tested, as tests may be allowed by one model but forbidden
by others. The syntax of the individual components of a litmus test are explained in further detail below.

4.1 <instructions>

<globalID> <coreID> <threadID> <intraInstID> <opcode>
<globalID>: a unique ID for every Instruction
<coreID>: the core on which the thread is running
<threadID>: unique thread ID per core (always 0 except in COATCheck)
<intraInstID>: the intra-instruction ID (always 0 except in COATCheck)
Example: 0 0 0 0 (Read Acquire RMW (VA 0 0) (PA 0 0) (Data 0))

4.1.1 <opcode>

“(Read|Write|Fence <flags> <va> <pa> <data>)”

Read|Write|Fence: obvious
<flags>: zero or more string identifiers (e.g., “RMW”, “Acquire”, etc.)
<va>: “(VA <vtag> <vindex>)”

<vtag>: virtual address tag (integer)
<vindex>: virtual address index (always 0 except in COATCheck)

<pa>: “(PA <ptag> <pindex>)”
<ptag>: physical address tag (integer) (should match vtag except in COATCheck)
<pindex>: physical address index (always 0 except in COATCheck)

4.2 <relationship>

“Relationship <name> <globalID0> 0 -> <globalID1> 0”

Example: “Relationship po 0 0 -> 1 0”

4.3 <outcome>:

Permitted|Forbidden|Required|Unobserved

4.4 Example litmus test (sb.test for TSO)

Alternative
0 0 0 0 (Write (VA 0 0) (PA 0 0) (Data 1))
1 0 0 0 (Read (VA 1 0) (PA 1 0) (Data 0))
2 1 0 0 (Write (VA 1 0) (PA 1 0) (Data 1))
3 1 0 0 (Read (VA 0 0) (PA 0 0) (Data 0))
Relationship po 0 0 -> 1 0
Relationship po 2 0 -> 3 0
Permitted

Note: the program order (po) relationship is required. This informs Check of the order of instructions
on each core. The po relation must be transitively expanded in the litmus test *.test file. The Check predi-
cate, ProgramOrder, relies on this relationship being specified. Other relationships that can be specified (for
use by the Check primitive HasDependency) are: addr, data, ctrl, and ctrlisync.

5

5 How to run

5.1 Running a single test with check

To run a test through a microarchitecture that is in the uarches directory of the pipecheck tutorial

repository:

check -i <input test file> -m <name of uarch file>

This will generate <input test file>.pdf in your current directory.
So for example, to run mp on SC fillable.uarch:

check -i ~/pipecheck_tutorial/tests/SC_tests/mp.test -m SC_fillable.uarch

will generate mp.pdf in your current directory.
If you want to run a test through a microarchitecture that is in a directory other than uarches (including

subdirectories of uarches), use the -d flag:

check -i <input test file> -m <name of uarch file> -d <directory of uarch file>

So for example, to run the solution SC.uarch on mp, you can run the following:

check -i ~/pipecheck_tutorial/tests/SC_tests/mp.test -m SC_fillable.uarch

-d ~/pipecheck_tutorial/uarches/solutions/

The check script has other options that allow you to control input and output, including generating only
GraphViz files rather than converting to PDF, increased verbosity of output, and different output directories.
To see a full list, run check with the -h option (check -h).

5.2 Running a suite of tests with run tests

To run a suite of litmus tests through a microarchitecture in the uarches directory of the repository:

run_tests -t <test file directory> -m <name of uarch file>

This will run all the tests in <test file directory> on the uarch provided, and put the output
GraphViz files in /pipecheck tutorial/out/. At the end, it will output statistics on

• how many tests were run

• how many were correct/too strict/buggy

To run a suite through a microarchitecture in a directory other than uarches, use the -d flag:

run_tests -t <test file directory> -m <name of uarch file> -d <directory of uarch file>

The run tests script has other options that allow you to control input and output, including increased
verbosity of output and choice of output directory. To see a full list, run run tests with the -h option
(run tests -h).

5.3 Generating PDFs from GraphViz files with gen graph

To convert a GraphViz file into an actual PDF of the graphs in it, use the gen graph script:

gen_graph -i <input GraphViz file>

This will generate a PDF in your current directory with the same name as that of the input file. So for
example,

gen_graph -i mp.test.gv

will generate mp.test.pdf in your current directory, and delete mp.test.gv.

6

5.4 Full stack verification with TriCheck

NOTE: The HLL memory model we provide is the C11 herd model from prior work [1]. Before running
TriCheck, define the TRICHECK HOME environment variable:

export TRICHECK_HOME=/home/check/TriCheck

Paths to relevant TriCheck files:

Litmus test templates: $TRICHECK_HOME/tests/templates

C11 herd model: $TRICHECK_HOME/util/herd

Compiler mappings: $TRICHECK_HOME/util/compile.txt

Litmus test generator: $TRICHECK_HOME/util/release-generate-tests.py

TriCheck: $TRICHECK_HOME/util/release-run-all.py

TriCheck output parser: $TRICHECK_HOME/util/release-parse-results.py

Parse output

Define a uarch

Write a HLL litmus
test template

HLL	litmus	test	templates

Litmus	Test	Generator HLL	Memory	Model	
Simulator	(Herd)

User-defined	inputs

HLL	Memory	Model

HLL	à ISA
Compiler	Mappings

ISA	μSpec	Model

Refine	inputs	if	
necessary/desired

Refined
HLL	Memory	Model

Refined
HLL	à ISA

Compiler	Mappings

Refined
ISA	μSpec	Model

Auto-generated	HLL	litmus	tests

HLL	Litmus	Test
Template HLL	Litmus	Test

TriCheck

BUGS.txt	
Strict.txt

Define a set of HLL
à ISA compiler
mappings

BUG.txt

Figure 2: Overview of TriCheck inputs and flow described below

5.4.1 How to write a C11 herd litmus test template

Store	Buffering	(SB)
P0 P1

W x	ß 1 W	y	ß 1
R	y	à 0 R	x	à 0

Figure 3: ISA pseudo-code for Store Buffering (SB) litmus test.

cd $TRICHECK_HOME/tests/templates

Sample C11 herd litmus test template, sb.litmus:

C <TEST>

{

[x] = 0;

[y] = 0;

}

P0 (atomic_int* y, atomic_int* x) {

7

atomic_store_explicit(x,1,memory_order_<ORDER_STORE>);

int r0 = atomic_load_explicit(y,memory_order_<ORDER_LOAD>);

}

P1 (atomic_int* y, atomic_int* x) {

atomic_store_explicit(y,1,memory_order_<ORDER_STORE>);

int r1 = atomic_load_explicit(x,memory_order_<ORDER_LOAD>);

}

exists (0:r0=0 /\ 1:r1=0)

5.4.2 How to write TriCheck compiler mappings

Edit compile.txt in util:

cd $TRICHECK_HOME/util

vim compile.txt

C11 HLL primitives in compile.txt will be mapped to regular ISA Read and Write operations surrounded
by any number of semicolon-delimited prefix and suffix ISA Fence instructions with the AccessTypes
specified in compile.txt.

5.4.3 How to run TriCheck

To run TriCheck and generate tests that use all combinations of C11 HLL memory ordering primitives, and
to generate tests that use only compiler mappings (i.e., no ISA primitives for C11 atomic operations):

cd $TRICHECK_HOME/util

./release-generate-tests.py --all --fences

./release-run-all.py --pipecheck=/home/check/pipecheck_tutorial/src/pipecheck

By default, TriCheck will generate and run tests for all templates in $TRICHECK HOME/tests/templates
and all uarches in $TRICHECK HOME/uarches. To see other options:

cd $TRICHECK_HOME/util

./release-generate-tests.py --help

./release-run-all.py --help

5.4.4 How to parse TriCheck output

To create files that list overly-constrained results (Strict.txt) and under-constrained results (BUG.txt) for
each uarch:

cd $TRICHECK_HOME/util

./release-parse-results.py

Files will be located in: $TRICHECK HOME/util/results/<uarch>

References

[1] Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling SC atomics in C11 and OpenCL.
In 43rd Annual Symposium on Principles of Programming Languages (POPL), 2016.

8

