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ABSTRACT
In parallel systems, memory consistency models and
cache coherence protocols establish the rules specifying
which values will be visible to each instruction of parallel
programs. Despite their central importance, verifying
their correctness has remained a major challenge, due
both to informal or incomplete specifications and to
difficulties in scaling verification to cover their opera-
tions comprehensively. While coherence and consistency
are often specified and verified independently at an ar-
chitectural level, many systems implement performance
enhancements that tightly interweave coherence and con-
sistency at a microarchitectural level in ways that make
verification of consistency difficult.

This paper introduces CCICheck, a tool and tech-
nique supporting static verification of the coherence-
consistency interface (CCI). CCICheck enumerates and
checks families of microarchitectural happens-before
(µhb) graphs that describe how a particular coherence
protocol combines with a particular processor’s pipelines
and memory hierarchy to enforce the requirements of
a given consistency model. To support tractable CCI
verification, CCICheck introduces the ViCL (Value in
Cache Lifetime), an abstraction which allows the µhb
graphs to cleanly represent CCI events relevant to con-
sistency verification, including demand fetching, cache
line invalidation, coherence protocol windows of vulner-
ability, and partially incoherent cache hierarchies. We
implement CCICheck as an automated tool and demon-
strate its use on a number of case studies. We also show
its tractability across a wide range of litmus tests.

1. INTRODUCTION
Memory consistency models (MCMs) establish the

rules by which programmers or compilers can reason
about which values will be visible to each instruction
of a given parallel program. Likewise, cache coherence
protocols establish system support for correct sharing
of cached values across the memory hierarchy. Both
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components need to be verified as part of the design
of a parallel processor. Unfortunately, the cost of pro-
cessor verification continues to grow with each genera-
tion, and now often represents over half of a project’s
total hours [19]. Substantial industry and academic
effort has gone into verification of coherence and consist-
ency, but bugs arising from unexpected interactions of
coherence, consistency, and address translation continue
to appear in hardware even today [4, 8, 26].

Generally, coherence protocols and consistency models
are verified independently [6, 7, 13, 34, 44, 45], with
coherence verifiers ignoring consistency implications and
consistency verifiers making assumptions about coher-
ence. However, coherence and consistency are often
tightly interwoven at the implementation level, com-
monly for the sake of aggressive performance optimiz-
ations such as speculative load reordering, but even in
simpler microarchitectures as well [9, 20, 25, 40]. The
coherence protocol assumes that any remaining order-
ings for consistency beyond its coherence guarantees will
be provided by the rest of the microarchitecture, and
the rest of the microarchitecture likewise expects certain
guarantees to be provided by the coherence protocol.
The guarantees that the coherence protocol provides to
the rest of the microarchitecture—and that the rest of
the microarchitecture in turn expects from the coherence
protocol—together constitute the coherence-consistency
interface (CCI).

If the coherence protocol does not provide the guar-
antees that the rest of the microarchitecture expects
it to provide, the combination of their orderings may
not be strong enough to enforce the architecture’s con-
sistency model, leading to consistency violations. For
example, coherence protocol verification often checks
for properties such as the single writer/multiple readers
(SWMR) invariant (only one writer or multiple readers
per address at any time) or the data value invariant
(DVI) (the value of an address at the start of a new
read epoch is the same as its value at the end of the
last read-write epoch) [39]. However, some coherence
protocols may also contain features like a livelock preven-
tion mechanism. In some cases (e.g., Section 2.1), such
a mechanism may cause stale data to occasionally be
returned to a core, but since it does not break coherence
invariants like SWMR or DVI, it will not be flagged as a
bug by a coherence protocol verifier. Meanwhile, if the
pipeline is verified (and operates) under the assumption
that the coherence protocol will never allow stale data



to be returned to it, it may use stale data in cases where
it should not, resulting in consistency violations. This
is an example of the verification gap that arises when
coherence and consistency are verified independently: it
may lead to situations in which the coherence protocol
and the rest of the microarchitecture each expect the
other to enforce required orderings, resulting in bugs.

As the above example shows, it is generally impossible
to verify the correctness of a memory model implementa-
tion unless ordering enforcement at the CCI is explicitly
taken into account. We therefore present CCICheck,
a general-purpose, open-source framework and tool for
verifying that the orderings required by an architec-
ture’s consistency model are maintained by the combina-
tion of the microarchitecture-level orderings enforced by
the pipeline, coherence protocol, and memory hierarchy.
CCICheck follows PipeCheck in enumerating all possible
microarchitectural happens-before (µhb) graphs for a
suite of litmus tests1 on a given implementation [30, 31].
CCICheck borrows its pipeline model from PipeCheck,
but it provides constructs for more detailed memory
system modeling. CCICheck replaces the reads-from
(rf), write serialization (ws) and from-reads (fr) edges
used by PipeCheck with CCI-aware edges that represent
the microarchitectural enforcement of relationships like
SWMR and DVI by a particular coherence protocol.

Another key contribution of CCICheck is its notion of
a ViCL, or “value in cache lifetime”, which summarizes
the residency of data values in locations in the memory
hierarchy. ViCLs allow CCICheck to tractably and
yet comprehensively model scenarios involving demand
fetching, partial incoherence, and a variety of coherence
protocol transitions. This allows it to detect bugs that
would have gone unnoticed by prior verifiers.

CCICheck’s main high-level contribution is that it
achieves scalable CCI-aware verification by clearly enu-
merating how implementation-level guarantees provided
by the pipeline, coherence protocol, and memory hier-
archy combine to enforce all of the requirements of a
consistency model. CCICheck allows users to explicitly
specify CCI-aware orderings for their implementation,
and it automatically and intelligently enumerates all
possible executions of provided litmus tests on the given
implementation. Through intelligent pruning that re-
duces the number of graphs enumerated, CCICheck
can automatically verify large systems with non-trivial
memory hierarchies in tractable runtimes.

2. MOTIVATION

2.1 Window of Vulnerability/Peekaboo
As one example of non-intuitive CCI behavior, con-

sider the window of vulnerability problem, a situation in
which certain coherence protocols are prone to livelock
due to repeated invalidation-before-use of data propagat-
ing through a cache hierarchy [28]. In one proposed
livelock-avoidance technique, a core is allowed to per-
form one operation on the data when it arrives, even if it
1A litmus test is a small program used to test consistency
model implementations.

Core 0 Core 1
(i1) [x] ← 1 (i3) r1 ← [y]
(i2) [y] ← 1 (i4) r2 ← [x]
Under TSO: Forbid r1=1, r2=0

(a) Code for litmus test mp

Core 0 Core 1

1
x: prefetchS miss, issue

GetS/ISD

2
x: receive Fwd-GetS, send

Data[0]/S

3
x: store miss; issue

GetM/SMAD

4
x: receive

Data[0](ack=1)/SMA
x: receive Inv, send

Inv-Ack/ISDI

5
x: receive Inv-Ack,
perform store/M[1]

6 y: store hit/M[1]

7
y: load miss, issue

GetS/ISD

8
y: receive Fwd-GetS, send

Data[1]/S[1]

9
y: receive Data[1],

perform load r1=1/S[1]

10 x: load miss, stall/ISDI

11a
x: receive and drop

Data[0], replay GetS/ISD

12a
x: receive Fwd-GetS, send

Data[1]/S

13a
x: receive Data[1],

perform load r2=1/S[1]

(b) The Baseline WoV solution drops stale data upon receipt:
livelock-prone, but no consistency violation

Core 0 Core 1

11b
x: receive Data[0],

perform load r2=0/I

(c) If livelock avoidance is naively added for WoV cases, steps 11a,
12a, and 13a are replaced by step 11b. Stale data can be read,
resulting in a consistency violation.

Figure 1: Two executions of mp in scenarios prone to
the window of vulnerability problem (adapted from [39])

has already been invalidated [39]. This does not violate
coherence as the operation is effectively ordered at the
time of the invalidation. However, this use of stale data
may lead to consistency violations, and is known as the
“Peekaboo” problem.

Figure 1 demonstrates two operational execution se-
quences of the mp litmus test (Figure 1a) which demon-
strate potential livelock and a consistency violation re-
spectively. Under TSO, the mp test outcome r1=1, r2=0
is forbidden, as neither the stores nor the loads may be
reordered. The executions of Figure 1 begin identically,
as denoted by Steps 1-10 which are common to both:
a prefetch or speculative request for x is issued (step
1) before the load of y executes. The prefetched line
is invalidated (step 4) by core 0’s store to x before the
data is received. The demand request for x from the
core is also issued (step 10) before the (now stale) data
for x arrives.

At step 11, the two sequences diverge in behavior.
In the first execution, the stale data is dropped and
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Figure 2: PipeCheck µhb graph for the mp litmus test.

the load is retried; this satisfies TSO but may lead to
livelock. In the second execution, when the stale value
of x arrives at core 1, the coherence protocol returns
that value of x to the core (Step 11b) to prevent livelock.
When it does so, it creates a consistency violation by
allowing the forbidden outcome r1=1, r2=0 to occur.

One solution which avoids livelock while also satisfying
TSO ordering requirements is to allow access to invalid-
ated data if and only if the accessing instruction was the
oldest unperformed load or store in program order at the
time the coherence request for the now invalidated data
was issued [39] (henceforth referred to as the “Peekaboo
solution”). This is clearly a case where a feature of the
coherence protocol (the livelock-avoidance mechanism)
affects the MCM implementation in a way that goes
beyond traditional coherence protocol properties such as
SWMR. The interplay between the pipeline, coherence
protocol, and memory hierarchy gives rise to complexity
beyond what is verifiable through non-rigorous, intuitive
methods alone. CCICheck’s modeling and verification
of Peekaboo are covered in detail in Section 6.3.

2.2 Inadequacies of Current Verifiers
Current MCM verifiers cannot address CCI verific-

ation problems such as the Peekaboo scenario. For
example, the recently-proposed PipeCheck tool (which
CCICheck builds on and generalizes) performs automatic
MCM verification at the pipeline level [30] using enu-
merations of microarchitectural happens-before (µhb)
graphs. Figure 2 shows an example of the µhb graph for
two five-stage in-order TSO cores for the litmus test mp.
A column of nodes in a µhb graph (e.g., column (i1)) rep-
resents an instruction executing on a core. Each node in
a column represents an instruction at a specific pipeline
stage. Each edge in the graph represents a happens-
before ordering enforced at the microarchitectural level
via passing of messages, enforcement of in-order execu-
tion, or some other mechanism. Acyclic and cyclic µhb
graphs correspond to observable and unobservable execu-
tions respectively. If a cycle occurs, it would mean that
an event happens before itself, which is contradictory;

therefore such a scenario must be impossible to observe.
In this graph, the black vertical edges represent the

progression of an instruction through the various pipeline
stages. Blue po edges represent instructions passing
through the fetch stage in program order (po). The
horizontal green edges enforce that the pipeline stages
are in order.

The red rf (“reads-from”) edge represents the transfer
of the value y = 1 between core 0 (i2) and core 1 (i3) for
this particular execution of the test. Notably, it abstracts
away the various coherence protocol transitions and
individual caches that comprise the transfer. Likewise,
the red fr (“from-reads”) edge enforces that for the read
of x to return a value of 0 in this execution, it must occur
before the store of x = 1 reaches the memory hierarchy.

As can be seen in Figure 2, PipeCheck abstracts the
entire memory hierarchy into a single row of nodes.
This makes it impossible to use it for the analysis of
CCI scenarios such as the Peekaboo problem, partial
incoherence, lazy coherence, etc., as there is no way to
refer to individual caches, let alone cache sub-events. For
example, consider using Figure 2 to model the Peekaboo
solution described in Section 2.1. The red from-reads
(fr) edge cannot be kept in the graph, as core 1 is made
aware of the store of 1 to x through an invalidation before
the load occurs. The edge cannot simply be removed
either, as doing so would make the graph acyclic and
imply that the execution was observable, even though
the Peekaboo solution guarantees that such an execution
is forbidden.

CCI verification requires the ability to reason about
cache occupancy and coherence protocol events for a
specific memory hierarchy and coherence protocol. For
example, in the case of the Peekaboo problem, the ana-
lysis must keep track of when the data x = 0 is present
in Core 1’s cache relative to other events in the execution.
It also needs to keep track of whether the invalidation
of x’s cache line happens before or after the data is used
by Core 1. CCICheck reasons about cache occupancy
and coherence events using the ViCL abstraction, which
is explained in the next section.

3. THE ViCL ABSTRACTION
This section introduces the Value in Cache Lifetime

(ViCL) abstraction. ViCLs model cache occupancy and
coherence protocol events relevant to consistency veri-
fication in a way that maintains the ability to perform
tractable and flexible analysis.

3.1 ViCLs: Definition and Usage
Conceptually, a Value in Cache Lifetime (ViCL) rep-

resents the period of time (relative to a single cache)
over which a given value2 is present in a specific cache
or memory. To formally define a ViCL, we first con-

2We assume without loss of generality that each store pro-
duces a unique value even if its contents are identical with
the value of another store. This does not affect correctness,
as our enumeration algorithms would consider either store
to be a possible source for a load returning the value in
question.



ceptually assign a unique cache id to every cache in
the system, and a unique generation id to each line
brought into a given cache over the duration of an execu-
tion. This allows us to uniquely refer to each cache line
in an execution using its cache id and generation id.
Formally, a ViCL is a 4-tuple

(cache id, address, data value, generation id)

which maps onto the period of time within which the
cache line corresponding to generation id in the cache
identified by cache id holds the value data value for ad-
dress address. A given address and data value pair may
have many matching ViCLs over the course of an execu-
tion. These ViCLs could be in different caches (different
cache ids), be brought into the same cache at differ-
ent points in the execution (different generation ids),
or both. Likewise, different data values for an address
correspond to different ViCLs, which is key to their use
in enumerating possible read-write orderings for con-
sistency verification. There may also be gaps between
ViCLs for a given address and cache pair where there
is no value in the cache for that address. In addition,
our definition allows for the (admittedly uncommon, but
feasible) possibility that a cache may hold two lines for
the same address simultaneously.

A ViCL mapping’s time period starts at a ViCL Create
event and ends at a ViCL Expire event. ViCL Create
and ViCL Expire events represent the points in time
at which the corresponding ViCL 4-tuple starts and
stops serving the data in question respectively. A ViCL
Create event occurs for address x when either (i) a cache
line containing x enters a usable state from a previously
unusable state, or (ii) when a value is written to x in a
cache line. A ViCL Expire event for address x occurs
when (i) its cache line enters an unusable state from a
previously usable state, or (ii) a value is written to x in
a cache line.

ViCLs are per-address, while cache lines generally
hold more than one address. We assume without loss of
generality that the creation and expiration of a ViCL for
a given address has no inherent effect on ViCLs of other
addresses, even if they do share a cache line. Any such
sharing possibilities (e.g., evictions due to false shar-
ing) are already handled by CCICheck’s comprehensive
enumeration. In such cases, our analysis is conservat-
ive but correct. For clarity, as in previous consistency
model studies [7, 30, 32, 36, 38], we assume that values
are identically-sized (at the granularity at which cores
address memory) and that all addresses are aligned to
this same granularity (i.e., there is no partial address
aliasing).

ViCLs can also represent main memory, because we
can also assign a unique cache id to capture all of main
memory. Because memory lines are not evicted in the
same way that cache lines are, the generation id for
all main memory ViCLs will never change3. ViCLs
representing main memory can be useful to represent
uncacheable accesses.

3...unless data is swapped from memory out to disk, which
we do not consider (though the formalism supports it).

Thread 0 Thread 1
(i1) [x] ← 1 (i3) r1 ← [x]
(i2) [x] ← 2 (i4) r2 ← [x]
In TSO: r1=2, r2=2 Allowed

(a) Litmus test co-mp

Core 0
L1$

Shared
L2$

Core 1
L1$

M M S

S S

S

Store
Req./
GetM

Data/
Store
Hit

Store
Req./
Hit

Ack/
Fwd.
Data

Repl./
Silent
Evict

Load
Req./
GetS

Data
Load
Hit

Load
Req./
Hit

(time)

(b) Sample timeline for an execution which produces the legal
outcome r1=2, r2=2. (M = Modified state, S = Shared state)

Core 0
L1$

Shared
L2$

Core 1
L1$

(0,x,1,0)

(0,x,2,0)

(1,x,0,0) (1,x,2,1)

(2,x,2,0)

Store
Req./
GetM

Data/
Store
Hit

Store
Req./
Hit

Ack/
Fwd.
Data

Repl./
Silent
Evict

Load
Req./
GetS

Data
Load
Hit

Load
Req./
Hit

C E C E

E C

C
(time)

ViCL (cache id, addr, data, gen. id)
ViCL Nodes

C
ViCL
Create

E
ViCL
Expire

(c) Same timeline, but with ViCLs added. The thicker red arrows
correspond to those in Figure 4.

Core 0
L1$

Shared
L2$

Core 1
L1$

(0,x,1,0) (0,x,2,0)

(0,x,2,1)

(1,x,0,0) (1,x,2,1)

(2,x,2,0)

Store
Req./
GetM

Data/
Store
Hit

Store
Req./
Hit

Ack/
Fwd.
Data

Repl./
Silent
Evict

Prefetch
Req./

PF GetS Ack Data

Repl./
Silent
Evict

Load
Req./
GetS

Data
Load
Hit

Load
Req./
Hit

R C E C D E R C E

E C

R C
(time)

Always Enumerated

C
ViCL
Create

E
ViCL
Expire

Enumerated as Needed

R
$ Line
Request D

$ Line
Downgrade

Not Enumerated

C
ViCL
Create

E
ViCL
Expire R

$ Line
Request

(d) Same timeline, but with additional cache line events that may
be needed to model certain scenarios

Figure 3: An example of how ViCL nodes relate to
events in the cache hierarchy.

3.2 ViCL Timeline Example
Figure 3 shows an example of how litmus test co-mp

(Figure 3a) might be executed on a fully coherent system
with private L1 caches and a shared L2 cache. Figure 3b
presents a timeline using traditional notions of cache line
state, while Figure 3c presents the same timeline using
ViCLs. In addition to ViCL create and expire points, it
also denotes the value of ViCL 4-tuples at noteworthy
points in the timeline. At the beginning, the shared L2
cache holds the value 0 for address x. The first thread 0
store then misses in its L1 cache, causing it to fetch the
line for exclusive ownership. When the L2 cache receives
the request, the L2 cache’s ViCL expires4. Once the
data arrives at core 0’s L1 cache and the store completes,
a new ViCL is created at the L1 cache, representing both
the move to a valid state and the writing of new data.
When the second store then completes, the first L1 ViCL

4The line may not necessarily be invalidated; it may move to
a state tracking the L1 cache as the new owner. Nevertheless,
the ViCL expires because the old data is no longer being
served.



(which had a data value of 1) expires, and a new ViCL
is created for x with the value 2.

When thread 1 starts executing sometime later, it will
fetch the data from core 0’s L1 cache. This does not
cause a ViCL expiration, as no components of the core
0 L1 ViCL’s 4-tuple change. Instead, the L1 cache for-
wards the data to the other L1 through the L2, creating
new ViCLs in those caches in the process.

In some scenarios, ViCL create and expire events
may be sufficient to verify all necessary orderings. In
more complex scenarios, however, we can add additional
coherence-related events to the timeline, and infer order-
ings for those events with respect to ViCL create and/or
expire events. For example, a cache line downgrade
event (for a cache line in an exclusive state) may take
place between ViCL Create and ViCL Expire. Similarly,
a cache line request event will happen before the ViCL
it fetches gets created. Figure 3d shows how these ad-
ditional events can be included in the timeline for the
same execution of co-mp. Our Peekaboo and TSO-CC
case studies in Section 6 require such additional nodes.

3.3 Using ViCLs in µhb Graphs
A key benefit of ViCL events is that they map natur-

ally into nodes within CCICheck’s µhb graphs. Likewise,
orderings between such events (e.g., due to message
passing) map naturally onto µhb graph edges.

When modeling a particular execution by a µhb graph,
we add µhb nodes to the graph for every cache-accessing
instruction representing the ViCL create and ViCL ex-
pire events for the ViCL(s) that instruction accesses
in the execution. We rely on the microarchitecture
definition (Section 4.1) to list all possible caches that a
memory-accessing instruction could interact with (e.g.,
read directly from L1, read from L2 through the L1,
etc.). The address and data of a ViCL’s 4-tuple must
match those of its instruction, and the possibilities for
a ViCL’s generation ID are used to check whether two
ViCLs of the same address, value, and location are the
same ViCL or not. The maps from instructions to ViCLs
for an execution are not injective (since there may be
multiple instructions which map to a single ViCL); each
ViCL’s create and expire nodes appear in the µhb graph
no more than once. The maps are also not surjective
because there may be ViCLs which are not accessed by
any instruction, such as the first ViCL in Figure 3c. We
do not need to draw such non-accessed ViCLs as they
are not relevant to consistency enforcement.

Figure 4 illustrates a CCICheck µhb graph with ViCL
nodes for the execution timeline depicted in Figure 3c.
The four ViCLs in the graph represent the four right-
most ViCLs in Figure 3c (the very first ViCL does not
need to be enumerated as its data is not read by any
instruction). The edges between the ViCLs reflect the
ordering constraints in the microarchitecture specifica-
tion (Section 4.1). For example, the dot-dashed brown
“SW”edge enforces that ViCLs for the first write to x (i1)
must expire before the ViCLs for the subsequent write
(i2) are created, as per the coherence protocol’s SWMR
invariant. The “NoDups” edge (which in this case over-

popo

NoDups

SW

SourcedFrom

UsesViCL

FetchStage

DecodeStage

ExecuteStage

MemoryStage

WritebackStage

StoreBuffer

Completed

L1 ViCL Create

L1 ViCL Expire

L2 ViCL Create

L2 ViCL Expire

(i1) (i2) (i3) (i4)

Figure 4: CCICheck graph for the Figure 3c scenario.

laps with the “SW” edge) between the two ViCLs for x
in core 0’s L1 cache enforces that the first ViCL for x in
the cache must expire before a second one for the same
address in the same cache can be created (i.e., there can
be no duplicates within a single cache at any time). The
two red “SourcedFrom” edges correspond to the arrows
in Figure 3c showing x=2 being propagated from the
core 0 L1 to the core 1 L1 through the L2. Finally, the
four black “UsesViCL” edges represent the fact that i3
and i4 access the same ViCL in this execution.

For each cache-accessing load, µhb edges represent
the fact that the instruction must access its ViCL some-
time between its creation and expiration. Likewise, for
each cache-accessing store, µhb edges represent the fact
that ViCLs are created when store values reach caches
(because they change the data component of the ViCL
4-tuple). µhb edges are also used to represent any order-
ings enforced or implied between ViCLs due to coherence
protocol behavior (such as the “SW” edge in Figure 4) or
memory hierarchy restrictions (like the “NoDups” edge
in Figure 4). The details of these orderings are specific to
each protocol (or class of protocols). If other cache line
events (like fetch requests and downgrades) are modeled,
then the graph will include µhb nodes representing these
events and edges representing their orderings with re-
spect to other events in the graph. Examples of such
cases can be found in Section 6.

The graph in Figure 4 is acyclic, so the outcome
r1=2,r2=2 is observable on the target machine. This
graph is one of many that CCICheck enumerates to
comprehensively cover all of the different ordering pos-
sibilities for a piece of code under test. Section 4 dis-
cusses the details of microarchitecture definitions and
the enumeration process.

4. CCICHECK OPERATION

4.1 Microarchitecture Definitions
A CCICheck microarchitecture definition consists of



three primary components. First, the definition specifies
the set of paths each instruction type can take through
the pipeline and memory hierarchy. (For example, a
load may read from the L1 or from the L2 through the
L1, etc.) Second, it specifies orderings maintained by
the pipeline between pipeline stages (e.g., declaring that
a decode stage is FIFO). These two steps match the
approach taken by PipeCheck [30, 31].

Third, and most importantly, CCICheck does not re-
use the reads-from (rf), write serialization (ws), and
from-reads (fr) edges used by PipeCheck and other pre-
vious work [3, 7]. These edges represent the behavior of
a highly-abstracted memory hierarchy and are insuffi-
cient for CCI-aware verification. Instead, a CCICheck
microarchitecture definition requires users to explicitly
specify constraints: self-contained axioms that describe
how instructions interact with ViCLs and how ViCLs
interact with each other. In this way, just as PipeCheck
replaced abstract architectural preserved program order
(ppo) edges with an individual pipeline’s enforcement
of that preservation, CCICheck replaces rf, ws, and
fr edges with lower-level edges representing a specific
implementation’s enforcement of the coherence axioms
like SWMR and DVI [39] that underly these higher-level
orderings.

The constraint-based approach serves two purposes.
Firstly, it allows us to build off (rather than compete
with) the significant research effort that has gone into
verifying coherence protocols. Coherence axioms such
as SWMR and DVI can be verified by coherence verifi-
ers and then used as axioms in CCICheck’s constraints.
Secondly, the constraint-based approach (alongside our
ViCL abstraction) meets our requirement of capturing
sufficiently many ordering enforcement details while re-
maining decoupled from any irrelevant coherence pro-
tocol implementation details. In contrast to what might
be expected, we find that few coherence protocol ax-
ioms are universal at the implementation level. While
properties such as SWMR may hold true across many
architectures in an abstract sense, the implementations
may vary widely (e.g., eager vs lazy invalidation). We
therefore necessarily leave the precise specification of
each axiom to each individual microarchitecture model.
Section 4.3 gives an example.

Some constraints take the form of logical implications.
For example, a constraint may look like “for all ViCL
Create events v taking place after µhb node n, add edge e
from n to v”. CCICheck therefore iterates over the entire
set of constraints until the graph converges (i.e. until no
new edges need to be added to satisfy the constraints).
This is nearly always within a few iterations.

Most constraints specify orderings enforced on ViCLs
by a coherence protocol. Every ViCL must have a source:
some may be sourced directly from a store instruction,
some may be sourced from other ViCLs via coherence
protocol events, and still others may be sourced from the
initial state of memory. Each such case is modeled by
µhb edges such as the “SourcedFrom” edges in Figure 4.
Likewise, edges representing invalidations of sharers on
a write, explicit cache/line flushes, and other order-

ings may also be added to the constraints for a given
model. Collectively, the set of constraints should be
strong enough to capture all orderings needed to verify
the correctness of an implementation.

4.2 Enumerating Graphs
The CCICheck µhb graph enumeration algorithm in-

volves two high-level steps. First, since the microarchi-
tecture definition specifies that each instruction takes
one out of some well-defined number of paths, CCICheck
calculates the cross product of the path choices for each
instruction in the given litmus test. This enumerates all
the ways in which the instructions could flow through
the microarchitecture. Second, CCICheck enumerates
all of the ways in which each of the constraints in a given
scenario can be satisfied.

Each constraint will have zero or more solutions. Each
solution adds zero or more edges to the µhb graph to
represent orderings that hold true in that microarchitec-
ture. If there are no solutions, the scenario is marked as
impossible and discarded. For example, a “StoreBuffer-
Forwarding” constraint may be impossible to satisfy if
there are no previous stores to the same address from the
core in question. Meanwhile, if there are multiple legal
solutions to a given constraint, then the solutions are
considered as separate possible graphs and further con-
straints are enumerated independently for each graph.

Once a graph has converged, if it is acyclic, then the
graph represents an observable outcome on the target
machine. On the other hand, if the graph becomes
cyclic at any point, then the execution is impossible
and no further enumeration is needed for that graph
(because edges are never removed). If no acyclic graph
can be generated for a test, then the test outcome is not
observable on the target machine.

We do not enumerate all possible concrete generation
IDs of ViCLs during the enumeration. For any two
instructions which access the same cache id, address,
and data in a given execution, we simply enumerate
whether the generation IDs for the two ViCLs are equal
(in which case the ViCL is shared by both instructions)
or distinct (each instruction uses a distinct ViCL).

4.3 Enumeration Process Example
A partial microarchitecture definition is given in Fig-

ure 5. Figure 5a depicts a code snippet and one par-
ticular choice of path for each instruction. Although
this depicts only a single thread for space reasons, the
approach is the same for the multithreaded case. Fig-
ure 5b shows a baseline µhb graph for this case before
constraint-derived edges have been added.

Figure 5c depicts a subset of the constraints for the
“Read L1” path taken by the load (i3). In particular, the
constraint shown demonstrates the scenario in which (i3)
expects that it accesses a ViCL that is also accessed by
another instruction in the program. As specified in the
logic of the constraint in Figure 5c, the constraint can
be satisfied by nodes from any instruction that shares
the same ViCL as the load in question. If such an
instruction is found, edges are drawn according to the



Thread
(i1) St [x] ← 1
(i2) Ld r1 ← [x]
(i3) Ld r2 ← [x]
Allowed: r1=1, r2=1
One possible execution

scenario:
(i1): Store path “Write L1”
(i2): Load path “Read L1 V”
(i3): Load path “Read L1”

(a) Sample thread

po po
FetchStage

DecodeStage

ExecuteStage

MemoryStage

WritebackStage

StoreBuffer

Completed

L1 ViCL Create

L1 ViCL Expire

(i1) (i2) (i3)

(b) Before Constraints

• Load path “Read L1”:
Fetch→Decode→Execute→Memory→Writeback

– Constraint “UsesViCL”: ∃i : SameViCL(self, i);

add edge (i,L1 ViCL Create)
µhb−−−→ (self,Memory)∧

add edge (self,Memory)
µhb−−−→ (i,L1 ViCL Expire)

– ...

(c) An example constraint for an instruction path

po po

UsesViCL

FetchStage

DecodeStage

ExecuteStage

MemoryStage

WritebackStage

StoreBuffer

Completed

L1 ViCL Create

L1 ViCL Expire

(i1) (i2) (i3)

(d) Constraint Solution 1

po po

UsesViCL

(i1) (i2) (i3)

(e) Constraint Solution 2

Figure 5: Using CCICheck path constraint definitions
to build sets of µhb graphs.

“add edges” portion of the constraint: from the ViCL
Create node of the satisfying instruction to the Memory
stage of the load, and from the Memory stage of the load
to the ViCL Expire node of the satisfying instruction.
In this case, there are two possible solutions to the
“UsesViCL” constraint of (i3). Figures 5d and 5e show
the cases where the constraint is satisfied by (i1) and
(i2) respectively.

4.4 Pruning and Scalability
While the CCICheck enumeration process may justifi-

ably raise concerns about scalability, in practice most
litmus tests do not need to go through all the enumera-
tion steps. Large portions of the solution space are gen-
erally pruned (due to early detection of cycles) or ruled
invalid (due to unsatisfiability of constraints). We also
perform the analysis in a depth-first manner to enable
faster pruning (e.g., by stopping as soon as any acyclic

Herd

CCICheck Implementation Specification
(Instruction Paths, Location Orderings, Constraints)

Litmus 
Tests

Path Choice 
Enumeration

Constraint 
Satisfaction

Cycle Checking

Coq

Pass/Fail

CCICheck

OCaml Compiler Native Binary Pass/Fail

Figure 6: CCICheck structure and toolflow.

graph is found). Through such pruning, we are able
to make the analysis tractable and relatively efficient.
We could easily further improve the performance of our
tool through optimizations such as parallel analysis of
independent graphs. However, for this work, we focus
our effort on generality and verifiability rather than per-
formance. Our results section (Section 7) demonstrates
that for realistic CCI verification scenarios, the runtimes
remain quite tractable.

5. TOOLFLOW AND METHODOLOGY
CCICheck is intended to be used at design time for

static consistency verification. The CCICheck toolflow
is shown in Figure 6. Given an implementation spe-
cification and a litmus test in litmus format [6, 7, 42],
CCICheck uses herd [7, 42] to parse the test and also
to check whether the execution is permitted or forbid-
den by the architecture-level memory model. CCICheck
automatically enumerates the set of µhb graphs rep-
resenting all possible executions of the litmus test on
the implementation according to the steps described
in Section 4. After generating the graphs, it compares
them to the behavior expected by the architecture-level
model (e.g., forbidden outcomes must not generate acyc-
lic µhb graphs). As its output, CCICheck informs the
user whether the memory model maintained by the im-
plementation being tested is stronger than, equivalent
to, or weaker than the architectural model it is supposed
to implement, across the given suite of litmus tests.

CCICheck is written in the Coq proof assistant [41],
which allows CCICheck’s models and analysis framework
to be analyzed formally. We use Coq’s built-in extraction
functionality to extract our Coq code to OCaml so it
can be compiled and run as a standalone binary.

Table 1 describes the various microarchitectures that
we analyze in this paper. To emphasize how unexpected
CCI behaviors can appear even in simple microarchitec-
tures, we model most architectures as having a five-stage
in-order pipeline model. Nevertheless, CCICheck easily
adapts to more complex and/or less restrictive pipelines.
As one example, Table 1’s TSOCC (OoO) model uses
an out-of-order processor, reflecting the implementation
of the original authors [18].

Our models cover a variety of memory hierarchies and
coherence protocols, including single and dual layers
of private and/or shared caches. “Cache-Cache Trans-



Name
Cache

Hierarchy

Cache-
Cache
Trans-
fers

Protocol
Classification

PrivL1 Private L1s At L1 Eager
SharedL1 Shared L1 — Eager

Peekaboo Private L1s At L1
Eager, with

Livelock
Prevention

PrivL1L2
Private L1s

and L2s
At L2 Eager

PrivL1L2CC
Private L1s

and L2s
At L1

and L2
Eager

PL1/SL2
Private L1s,
shared L2

At L1 Eager

TSOCC
(in-order)

Private L1s,
shared L2

At L1 Lazy

TSOCC
(OoO)

Private L1s,
shared L2

At L1 Lazy

Table 1: Memory hierarchy specifications and coherence
protocol features of the analyzed microarchitectures.

fers” describes whether cache lines (and thus ViCLs)
in private caches may be sourced from other caches at
the same level or whether such propagation must take
place via lower levels. The “Eager” coherence protocol
classification refers to an abstract vanilla coherence pro-
tocol that eagerly invalidates sharers before every write
and which is adapted to each different cache hierarchy
arrangement. Other classifications listed in Table 1 are
described in the corresponding parts of Section 6.

We test our models using a suite of 85 x86-TSO lit-
mus tests. These tests combine hand-written tests from
existing x86-TSO suites [36], tests that were automatic-
ally generated using the diy tool [42], and custom tests
addressing ViCL-inspired scenarios not already captured
by the suite. Our results are detailed in Section 7.

6. CASE STUDIES

6.1 Partial Incoherence
Our first example studies partially incoherent cache

hierarchies such as those found in many GPU systems
today. Alglave et al. recently found that the caches in
both NVIDIA and AMD GPUs were prone to numerous
undocumented or under-specified coherence/consistency
model behaviors [4]. Without accounting for cache occu-
pancy and relevant coherence protocol attributes, previ-
ous techniques were incapable of modeling such scenarios.
Using ViCLs, CCICheck provides a natural framework
in which the consistency implications of such scenarios
can be analyzed.

For example, Alglave et al. used a modified version
of the mp litmus test to experiment with GPU cache
hierarchies. This version of mp has membar fences inser-
ted between the two stores and between the two loads
in an attempt to impose enough orderings to avoid the
forbidden outcome Ld [y] = 1, Ld [x] = 0 on par-
tially incoherent GPU architectures. Alglave et al. dis-
covered empirically that membar fences are not sufficient
to enforce the test’s necessary orderings on many GPU
architectures, but there is no verification framework to

po popo po

SourcedFrom

SourcedBefore

InvSharers,NoDups

FlushThread
InvCache

FetchStage

DecodeStage

ExecuteStage

MemoryStage

WritebackStage

StoreBuffer

Completed

L1 ViCL Create

L1 ViCL Expire

L2 ViCL Create

L2 ViCL Expire

(i1) membar (i2) (i3) membar (i4)

Figure 7: µhb graph for modified mp on a hypothetical
GPU with no-allocate-on-write and no SWMR guaran-
tee [4]. In particular, if the core 1 fence does not enforce
the load→load ordering, the graph will be acyclic.

elucidate this further. As the studied microarchitectures
are proprietary, we apply CCICheck to a hypothetical
yet realistic GPU model with small, in-order cores, no-
allocate-on-write, and in which private L1 caches may
be incoherent with the shared L2 cache.

Figure 7 depicts a CCICheck graph for the modified
mp litmus test on this architecture. (Instruction labels
at the top of the graph correspond to the mp code in
Figure 1a.) Both stores write directly to the L2 cache,
while both loads read from the L1. Since the L1s are not
coherent with the L2, the ViCL of the load of x does not
need to be invalidated before the ViCL for the store of
x is created. Instead, it merely needs to be created (i.e.
the L1 needs to read the value from the L2) before the
store of x reaches the L2 and creates the store’s ViCL.

CCICheck’s µhb graphs have the right level of ab-
straction to reason about counterintuitive litmus test
outcomes such as the behavior of the modified mp litmus
test. Consider the dotted “InvCache” edge in Figure 7
between the membar fence and the load of x. If the fence
does not enforce this ordering, then there is no cycle in
this graph. Recalling that acyclic µhb graphs indicate a
scenario is observable, this graph allows CCICheck to
demonstrate how the outcome may be observable on par-
tially incoherent/weakly-consistent GPU architectures.
The specific details of a µhb graph can guide design-
ers towards understanding which features are helpful in
alleviating non-intuitive or erroneous CCI behavior.

6.2 Lazy Coherence
Our second case study uses CCICheck to analyze CCI

behavior in architectures using the recently proposed
TSO-CC protocol [17, 18]. TSO-CC is a scalable lazy co-
herence protocol for TSO architectures that uses private
L1s and a shared NUCA L2 that doubles as a directory



cache. TSO-CC does not have a complete sharer list
in the general case and allows for lazy invalidation of
sharers. This results in low on-chip storage requirements
for coherence, but requires each core to “catch up” to a
future point in logical time whenever it has a L1 miss
by invalidating all shared lines in its private L1 cache
(and hence any possibly out-of-date values) at that time.
This ensures that when a core sees one value from a core
other than itself, it is made aware of all previous values
from all other cores as well.

Architectures like TSO-CC have an unconventional
CCI which can result in the violation of some required
consistency orderings. Scenarios like this—in which a
coherence protocol’s design is coupled with features of
an MCM’s implementation—are great examples of the
need for CCICheck’s CCI-aware verification. We model
the baseline TSO-CC protocol in CCICheck by adding
appropriate constraints to load, store, and fence instruc-
tion paths. The load instruction paths have the following
edges to reflect cache invalidations on L1 misses: 1) to
the cache-missing instruction’s L1 ViCL Create node
from the L1 ViCL Expire node of each previous shared
L1 ViCL on the same core, and 2) from the cache-missing
instruction’s L1 ViCL Create node to the L1 ViCL Cre-
ate node of every subsequent L1 ViCL on the same core.
We also modify store paths to account for the possibil-
ity of a cache line downgrade (Modified→Shared) with
paths containing ViCL Downgrade nodes, as Modified
lines would not be invalidated on a cache miss while
downgraded lines would be. If a store’s ViCL in its L1
cache is downgraded before an L1 miss in that cache, it
is considered to be a shared ViCL for the invalidation
edges of the miss. If it is downgraded after the miss (or
not downgraded at all), it is immune to the invalidation
for that miss and is not subject to the corresponding
invalidation edges. Since these edges deal with single
caches as opposed to distributed sets of caches, it is safe
to assume a total ordering on events in that single cache
for any execution. In cases where the temporal ordering
of ViCLs in an L1 with respect to each other is not
known, we enumerate all possible permutations to cover
all possible cases. Finally, we add a constraint to the
fence instruction path to enforce TSO-CC’s requirement
that all shared lines in a core’s L1 are invalidated upon
a fence.

Figure 8 shows one possible µhb graph for the mp
litmus test (Figure 1a) executing on a microarchitecture
implementing TSO-CC. Since shared lines in the L1
caches are invalidated lazily, the L1 ViCL for the load of
x need only be sourced before the store of x occurs (as
in Section 6.1) as opposed to being invalidated before it.
In TSO-CC, if the load of y returns the value 1, it must
have taken a cache miss at some point, allowing the new
value of 1 to be fetched from core 0. Core 1 would have
invalidated shared lines in its L1 cache upon this miss,
and thus the ViCL for the load of x must be created
after the ViCL for the load of y is created.

The mp litmus test specifies a forbidden outcome, so
the verification goal is to identify a cycle in the µhb
graph. If the TSO-CC implementation properly invalid-

SourcedBefore

popo

SourcedFrom

InvSharers

InvCache

InvCache

FetchStage

DecodeStage

ExecuteStage

MemoryStage

WritebackStage

StoreBuffer

Completed

L1 ViCL Create

L1 ViCL Downgrade

L1 ViCL Expire

L2 ViCL Create

L2 ViCL Expire

(i1) (i2) (i3) (i4)

Figure 8: One possible µhb graph for mp on TSO-CC [18].
Although the coherence protocol does not eagerly inval-
idate any sharers of x before allowing (i1) to perform,
the necessary orderings are enforced by (i3) invalidating
shared data in its L1 upon a cache miss.

ates the caches as specified, then one of the “InvCache”
edges completes the required cycle. If these edges did
not exist, the forbidden outcome would be observable,
indicating that they are critical to maintaining TSO in
TSO-CC. As in the partial incoherence example, the
ViCL abstraction allows for comprehensive CCI verific-
ation, and the automatically-enumerated µhb graphs
give the designer intuition about how and why correct
behavior is preserved. Although the authors of TSO-
CC performed testing via simulation, CCICheck is more
comprehensive because it conducts exhaustive enumera-
tion of all possible ordering scenarios, where simulation
may be limited to just a few different orderings.

We also hope that CCICheck helps clarify statements
such as the TSO-CC paper’s claim that most coherence
protocols are designed for sequential consistency [18]. As
numerous widely-used architectures such as x86, ARM,
and Power are considered coherent yet not sequentially
consistent, it is easy to misinterpret such a claim. The
coherence protocol cannot enforce the consistency model
independently of pipeline components such as store buf-
fers or of pipeline behaviors such as speculative load
reordering. SC may require stronger guarantees from a
coherence protocol than other memory models, but it is
nevertheless up to the system as a whole to ensure that
consistency is properly enforced.

6.3 Window of Vulnerability/Peekaboo
This section demonstrates the use of CCICheck to

verify a solution to the Peekaboo problem previously in-
troduced in Section 2.1. The Peekaboo solution allowed
loads and stores to access already-invalidated data if
and only if they were the oldest in program order at
the time of the coherence request for the accessed line.
The CCICheck model for Peekaboo therefore includes a
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InvSharers
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FetchStage
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MemoryStage
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Figure 9: µhb graph for mp for the Peekaboo solution.

ViCL Request node and a ViCL Invalidate node. The
ViCL Request node represents the time at which a core
makes a coherence request for the cache line of a partic-
ular ViCL, and the ViCL Invalidate node represents the
point at which an invalidation request for that ViCL’s
cache line is processed. Here, unlike the cases previously
discussed, the invalidation of the ViCL is not the same
as its expiration. This is because a load may use inval-
idated data for one operation if the invalidation arrives
before the data response, in an effort to prevent livelock.

Figure 9 demonstrates a µhb graph for the Peekaboo
solution for the mp litmus test. Consider the load of x
that accessed invalidated data (henceforth referred to as
the “Peekaboo” instruction). The InvSharers edge eman-
ating from the ViCL Invalidate node of this instruction
indicates that the ViCL for the load of x is invalidated
before the store of x on core 0, as required by the SWMR
invariant. The graph includes a µhb edge (in this case
labeled “Peekaboo”) to the ViCL Request node of the
Peekaboo instruction from the Memory stage (for loads)
or Completed stage (for stores) of all preceding accesses
on that core. These edges ensure that the Peekaboo
instruction is the oldest in program order when its co-
herence request is issued, as required by the Peekaboo
solution. The presence of the Peekaboo µhb edge com-
pletes the cycle in this graph, thereby preventing the
illegal outcome. Thus, CCICheck helps designers verify
that the Peekaboo solution abides by TSO consistency
while avoiding livelock.

Finally, we note that (unsurprisingly) the act of form-
ally specifying CCI behavior can sharpen a designer’s
understanding of system behavior. For example, the
original English-language description of the problem
[39]—while very thorough and perhaps clear to many—
required us to interpret how far instructions preceding
the Peekaboo load (in program order) must have pro-
gressed before the coherence request was issued in order
for the load to be allowed to use stale data. In creat-
ing the CCICheck model, we were able to use the tool

to determine that a correct design would only allow
the load to access invalidated data if all previous loads
were performed and all previous stores had reached the
memory hierarchy and become visible to all cores before
the coherence request for the Peekaboo instruction was
issued. By requiring formal and explicit documentation
regarding such decisions, the CCICheck model becomes
a more precise solution specification than any natural
language description could be.

7. RESULTS ACROSS LITMUS TESTS
Figure 10 shows the runtimes of CCICheck across

all 85 litmus tests for six of our evaluated microarchi-
tectures. As the graph shows, there can be significant
variation in the time it takes CCICheck to run a litmus
test across tests and architectures. This is to be expec-
ted as litmus tests have varying numbers of instructions
and varying potential for ViCL pairings, thus leading
to different ranges of possibilities. For example, the sb
litmus test has only four instructions and tests that store
buffering is observable on TSO architectures. As such,
CCICheck exits after finding one observable execution
for the test, which is reflected by it finishing in under
a tenth of a second across all architectures. Meanwhile,
the iwp27 litmus test has 8 instructions and thus signi-
ficantly more possibilities. It also checks for a forbidden
outcome, which means that CCICheck has to explore
all possibilities for it. These characteristics are reflected
in its high runtime for certain architectures. However,
on a simpler architecture like the five-stage architecture
with a shared L1, CCICheck finishes the test in only 18
seconds. The geometric mean of test case execution time
is under 10 seconds for all architectures, indicating that
verification with CCICheck can be conducted relatively
quickly, especially since each litmus test can be run in
parallel with a different instance of CCICheck.

Much of the tractability of CCICheck comes about
due to its early pruning and invalid case detection (Sec-
tion 4.4). Many path combinations that CCICheck needs
to verify at the outset turn out to be invalid, due to
unsatisfiable constraints in their scenarios. Of the re-
maining valid scenarios, nearly all graphs are pruned
before reaching the end of the enumeration process. Our
subsequent research has identified constraint satisfaction
methods for further improving runtimes.

8. RELATED WORK
Consistency Models: Consistency models have

their roots in Lamport’s early work regarding sequen-
tial consistency (SC) [29]. Since then, a wide range of
memory models have been developed [2, 14, 15, 16, 21,
22, 40]. Recent consistency verification work embraces
some formalisms for modeling or verification, but gen-
erally remains at the architecture (not implementation)
level, abstracts coherence protocol behavior, and does
not check the CCI [1, 3, 5, 6, 7, 10, 15, 24, 32, 36, 38, 40,
43]. Dynamic verification tools [23, 35] test the actual
implementation of a system and thus can encompass the
CCI, but are not exhaustive and thus cannot conclusively
verify a consistency model implementation as CCICheck
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Figure 10: Runtimes of the x86-TSO litmus tests across six of the processors we modeled.

can. Unlike CCICheck, these tools also impose runtime
overheads on a system.

The PipeCheck tool [30, 31] breaks through the ar-
chitectural interface and verifies behavior at the (lower)
microarchitectural level. While PipeCheck captures nu-
ances in pipeline operation better than architectural
models, it largely continues to abstract the behavior of
the memory hierarchy and coherence protocol. Specific-
ally, it does not model cache occupancy and coherence
protocol transitions, instead relying on the notion of
an abstract unified memory hierarchy and architectural-
level notions like rf (reads-from) and fr (from-reads)
edges. This makes it incapable of modeling scenarios
where coherence and consistency interact, such as the
Peekaboo problem or lazy coherence. Our work ad-
dresses this gap by applying a microarchitectural ap-
proach to CCI verification.

Coherence: The field of cache coherence protocol
verification has also seen significant attention. Early
work in this realm explored the verification of the Fu-
tureBus+ protocol [13], while subsequent efforts used
formal languages like Murphi to check the FLASH co-
herence protocols [34]. More recently, Zhang et al. [44,
45] proposed techniques for designing cache coherence
protocols that are more amenable to formal verification.
In all these cases, however, consistency is not verified,
thus retaining the isolation of coherence and consistency
and ignoring the CCI. Our work seeks to bridge this
gap by using the invariants guaranteed by coherence
protocol verifiers as axioms for CCI-aware verification.

CCI Definition and Verification: CCI verifica-
tion has seen much less attention from both coherence
and consistency verifiers, in part because it is a com-
pelling notion that coherence and consistency should
be decoupled [33]. Zhang et al. [46] recommend keep-
ing cores, coherence, and reordering mechanisms sep-
arate from each other in an implementation in order
to keep verification scalable. Unfortunately, since most
implementations of coherence and consistency become
interwoven for performance or design reasons [4, 11, 12,
18, 27, 37, 39], CCI verification is an under-researched
necessity. CCICheck’s µhb graphs, ViCL abstraction,
and axiomatic treatment of protocol behaviors allow it
to fill the CCI verification gap.

9. CONCLUSION
In this paper, we presented CCICheck, a methodology

and tool for scalable verification of the CCI (coherence-
consistency interface) and consistency model implement-
ation of a given microarchitecture. CCICheck uses µhb
graphs and exhaustive enumeration of all possible ex-
ecutions to verify that a microarchitecture maintains
a consistency model across a set of litmus tests. The
key concept underpinning CCICheck’s analysis is the
ViCL abstraction, which allows it to model cache occu-
pancy and coherence protocol events to the level required
for verification without modeling all coherence protocol
transitions. CCICheck microarchitecture definitions con-
sist of a set of instruction paths and constraints for those
paths, allowing it to handle a wide range of microarchi-
tectures. It uses intelligent pruning and early detection
of unsatisfiable constraints to reduce the number of ex-
ecutions it needs to enumerate. We have shown that
CCICheck can be used to model CCI issues such as the
Peekaboo problem, as well as partially coherent and
lazily coherent architectures, both of which have com-
plicated CCIs. CCICheck is open source and publicly
available at github.com/ymanerka/ccicheck.
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