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Abstract—Many hardware security exploits result from the combination of well-known

attack classes with newly exploited hardware features. CheckMate is an approach and

automated tool for evaluating microarchitectural susceptibility to specified attack

classes, and for synthesizing proof-of-concept exploit code for susceptible designs.

& ARECENTWAVEof hardware security exploits—

Spectre,1 Meltdown,2 and variants thereof—has

heightened concerns about how the effects of

speculative execution on nonarchitectural state

(e.g., CPU caches) can make sensitive information

available for extraction via side-channel attacks.

What is novel and surprising about these exploits

is not the side-channel attacks they use, but rather

their clever ability to create practical working

exploits out of a variety of widely implemented

hardware speculation features that have been

considered safe for decades. As speculation is so

fundamental to CPU performance, it has become a

grand challenge in the computer architecture

community to develop a general-purpose solution

for preventing Spectre-like attackswhile neverthe-

less permitting forms of speculation that are

indeed safe.

More broadly, because a microarchitecture’s

state space is so large and designs are too compli-

cated, hardware and system designers cannot

possibly reason manually about all possible ways

in which nonarchitectural side effects could be
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exploited via side channels. Instead, ideally, a tool

should automatically analyze a particular micro-

architecture early in the design process, thereby

enabling designers to find and fix any vulnerabil-

ities prior to their hardware being released into

thewild.

This paper presents CheckMate, a formal

approach and automated tool for evaluating the sus-

ceptibility of a microarchitecture to formally speci-

fied classes of security exploits. If CheckMate

determines that a given hardware design is vulnera-

ble to a particular class of attacks, it produces as

output both proof-

of-concept exploit

code snippets and

visual depictions of

the specific execu-

tion interleavings

exploited by the

attack. Importantly,

CheckMate’s techni-

ques are not specific

to Spectre and Melt-

down. In fact, the CheckMate project was started

prior to the public announcement of the attacks in

January 2018. Because of the tool’s generality,

CheckMate was able to automatically synthesize

two new attack variants, “SpectrePrime” and

“MeltdownPrime,” that had not been identified prior.

A key insight powering CheckMate is the per-

haps surprising overlap between microarchitec-

ture-level analysis of memory consistency model

(MCM) bugs and of security vulnerabilities.

Namely, both can result from specific problematic

interleavings of execution steps in the hardware

implementation when an application executes.

Based on this insight, we leveraged our earlier

work on MCM verification to build enhanced

microarchitecture models and formal analysis

techniques that are more suitable for exploring

the security domain.

No solution to the Spectre/Meltdown prob-

lem will be generally accepted unless it is accom-

panied by a rigorous demonstration of its safety.

CheckMate makes it possible to rigorously and

automatically analyze such proposals to deter-

mine if they indeed plug the vulnerabilities that

they claim to fix. We hope that hardware

systems designers will use our open-source

CheckMate tool (publicly available at github.

com/ctrippel/checkmate) to conduct early-stage

security verification of their proposed designs.

CHECKMATE: AN APPROACH AND
TOOL FOR HARDWARE SECURITY
VERIFICATION

CheckMate adds to the Check family of tools

(see check.cs.princeton.edu) as the first hardware

security verification tool in the suite; the others

are designed forMCMverification. TheCheck tools

feature a domain-specific language (DSL), mspec,3

for encoding formal axiomatic specifications of

microarchitectures and their relevant OS support

called mspec models. A mspec model is comprised

of axioms (essentially first-order logic statements)

that define hardware-supported micro-operations

(micro-ops), microarchitectural structures that

micro-ops pass through at various points of execu-

tion, and any hardware-specific execution event

orderings (e.g., in-order Fetch stage, out-of-order

Execute stage, or FIFO Store Buffer). CheckMate

conducts verification with respect to a mspec

model of a hardware implementation (as do the

other Check tools), evaluating its susceptibility to

formally specified classes of security exploits that

are provided in the same axiomatic format.

Microarchitecturally Happens-Before Graphs

for Hardware Security Analysis

Automatic generation of potential vulner-

abilities requires techniques for modeling and

analyzing the particular behaviors that the

attacks exploit. Given that all of the recent spec-

ulation-based attacks rely on leaking information

via nonarchitectural state, any techniques to

analyze security attacks must be able to account

for speculation as well as other implementation-

specific optimizations that might be exploited

by side-channel attacks.

Many existing formal analysis techniques work

at the level of an ISA or a programming language,

since both frequently come with specifications

(of varying degrees of formality) defining the set of

legal behaviors, and the analysis tools can refer to

the specifications as the arbiter of correctness.

However, tools operating at these levels by defini-

tion have no chance of accounting for the types of

hardware-specific optimizations that side-channels

exploit. In contrast, CheckMate leverages techni-

ques developed by other tools in the Check family3

This paper presents

CheckMate, a formal

approach and auto-

mated tool for evaluating

the susceptibility of a

microarchitecture to for-

mally specified classes

of security exploits.
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to build rigorous specifications of behaviors

occurring at the microarchitecture level. With

these implementation-aware specifications, Check-

Mate can conduct systematic analysis of the

microarchitectural event orderings and interleav-

ings that constitute a hardware security exploit.

More specifically, CheckMate adopts micro-

architecturally happens-before (mhb) graphs from

prior MCM work which were designed to model

microarchitecture-specific program executions as

directed graphs. Figure 1(e) gives an example.

Nodes represent microarchitectural events of

interest, such as a micro-op reaching some partic-

ular point in the microarchitecture (e.g., a store

entering or exiting a store buffer); directed edges

represent temporal “happens-before” relation-

ships between nodes (e.g., a store enters the store

buffer before it writes to the L1 cache).

In this paper, we make the important and non-

obvious observation that the event ordering

issues present in hardwareMCManalysis are sim-

ilar to those relevant for hardware security analy-

sis. For example, both MCM and security analysis

share two requirements: a way to determine if a

specific program execution scenario is possible

on a given microarchitecture, and a mechanism

for analyzing microarchitectural event orderings

and interleavings corresponding to a program’s

execution.

The first requirement above is met by a core

principle of mhb graph analysis that cyclic mhb

graphs represent impossible executions. For the

second requirement, we extend and adapt mhb

graphs in novel ways for security verification.

Specifically, we introduce the concept of exploit

patterns to represent hardware execution pat-

terns indicative of security exploits as mhb sub-

graphs. When a mhb graph contains an exploit

pattern, we say that the mhb graph represents

an exploit program execution. We also leverage

relational model finding (RMF) techniques rather

than the custom solvers used in prior Check

tools in order to enable the broader analysis

that CheckMate needs to perform.

RMF for Efficient Hardware-Aware Exploit

Program Synthesis

As described above, CheckMate conducts

implementation-aware exploit program synthesis

via synthesis of mhb graphs, where a mhb graph

Figure 1. CheckMate requires two inputs: (i) a microarchitecture specification, as in (b), which is an axiomatic description of

a hardware design, as in (a), and its relatedOS support; and (ii) an axiomatic exploit pattern specification which can be

thought of as amhb subgraph, as in (c). CheckMate evaluates themicroarchitecture’s susceptibility to the class of exploits

and outputsmhb graphs representative of implementation-aware exploit program executions. Given (b) and (c) as inputs,

CheckMate synthesizes (e) and (f).
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represents a specific execution of an exploit pro-

gram. These synthesized program executions

must satisfy two primary constraints: the mhb

graph is acyclic, meaning it represents an observ-

able program execution, and the mhb graph

contains the user-specified exploit pattern.

Figures 1(e), 2, and 3 give examples of Check-

Mate-generatedmhb graphs.

RMF is a natural fit for implementation-

aware program synthesis. Most basically, a rela-

tional model is a set of constraints on an

abstract system of atoms (basic objects) and

relations, where an N-dimensional relation

defines some set of N-tuples of atoms.4 For

example, a mhb graph is a relational model: the

nodes of the mhb graph are atoms, and the

edges in the mhb graph form a two-dimensional

relation over the set of nodes (with one source

node and one destination node for each edge).

A constraint for a mhb graph might state that

the set of edges in any satisfying instance (i.e.,

any satisfying mhb graph) is acyclic. Another

constraint might state that the set of nodes and

edges in any instance must contain a specific

mhb subgraph or pattern.

CheckMate stands out in the Check suite as

the first security verification tool, but also in its

use of RMF for conducting microarchitectural

analysis. Thus, CheckMate’s inputs—a mspec

model and a formal description of class of secu-

rity exploits, called an exploit pattern—are both

provided in an embedding of the mspec DSL in

the Alloy RMF DSL.5 Using Alloy’s RMF backend,

CheckMate transforms the microarchitecture

and exploit pattern specification inputs into

hardware-specific exploit programs when the

input microarchitecture is susceptible to the

input vulnerability. Figure 1 gives an example of

this transformation.

While RMF naturally aligns with CheckMate’s

program synthesis approach, a na€ıve embedding

of mhb in the Alloy DSL was not sufficient to con-

duct program synthesis that terminates (within

days) on even trivially simple designs. RMF can

be challenged by huge search spaces that are

infeasible to analyze in terms of time or memory.

Thus, one of our contributions was making

implementation-aware program synthesis tracta-

ble. Our optimized embedding of CheckMate

in Alloy, detailed in Section V of the original

conference paper,6 prunes large portions of the

search space during synthesis if found to be

redundant; this makes implementation-aware

program synthesis feasible. Specifically, Check-

Mate runtimes for the experiments in our case

study range from minutes (for generating the

first exploit on a susceptible microarchitecture)

to hours (for generating all exploits within

a user-provided bound).

Security Litmus Tests

CheckMate conducts bounded verification,

meaning the user must specify a maximum

exploit program size for synthesis (in terms of

parameters such as the number of physical

cores, threads, instructions, and processes).

Ultimately, CheckMate outputs mhb graphs that

represent executions of, security litmus tests to

adapt a term from the MCM literature.7–10 Secu-

rity litmus tests are the most compact represen-

tation of an exploit program, meaning they

contain the minimal number of operations neces-

sary to produce the exploit pattern of interest.

They are useful to output because: 1) they are

much more practical to analyze with formal tech-

niques than a full program due to their com-

pact nature; and 2) they are nevertheless easily

transformed into full executable programs when

necessary.

CheckMate can automatically generate a

large volume of security litmus test programs

so that the user can identify all vulnerable hard-

ware features. For example, given a FlushþRe-

load pattern [see Figure 1(c)], CheckMate

effectively generates all possible ways in which

an input microarchitecture could render the

reload access a hit. Each generated program

differs in some way, such as how the attack is

performed. For example, in our case study

(later in this paper), CheckMate-synthesized

Meltdown and Spectre attack variants exploit

speculative cache pollution, whereas synthe-

sized traditional FlushþReload attacks exploit

the combination of shared read-only memory

and physical resource sharing between

Attacker and Victim. Our FlushþReload litmus

test pattern is also sufficiently general that

CheckMate also generates alternative attacks

where the CLFLUSH instruction is another mem-

ory access mapping to the same L1 cache line
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as the exploit’s target address, thereby evicting

it (i.e., EvictþReload).

SYNTHESIZING REAL-WORLD
SECURITY EXPLOITS WITH
CHECKMATE

To showcase CheckMate’s applicability to mod-

ern secure processor and systems design, we con-

ducted a case study to evaluate the susceptibility

of a speculative OoO processor to both FlushþRe-

load and PrimeþProbe cache timing side-channel

attacks. When supplying CheckMate with our

microarchitecture and FlushþReload exploit pat-

tern, CheckMate automatically generated security

litmus test programs representative of Meltdown

and Spectre attacks. Upon switching the FlushþRe-

load pattern to a PrimeþProbe pattern, CheckMate

synthesized new attacks related to Meltdown and

Spectre, yet distinct.11

CheckMate augments existing mspec modeling

techniques with additional capabilities and features

including: distinct processes (e.g., attacker and vic-

tim processes), private and shared address spaces,

memory access permissions, cache indices, coher-

ence protocol invalidation messages, speculation,

and branch prediction. The hardware design in our

experiments is a five-stage pipeline—Fetch, Exe-

cute, Reorder Buffer, Permission Check (PC), Com-

mit—where processor cores have FIFO store

buffers and private L1 caches connected to main

memory. We note, however, that exploits generated

for this simple pipeline have also been demon-

strated to succeed on more complex real-world

microarchitectures as well.

Themhb graphs in Figures 2 and 3 reflect the five-

stage design. The mhb graphs in Figure 3 additionally

feature RWReq/RWResp execution events, which cor-

respond to the points at which coherence requests/

responses are made/received for a given memory

access. We omit these locations from Figure 2 mhb

graphs since they are not relevant for the Meltdown

and Spectre security litmus tests. The supported

micro-ops in our mspec model are reads, writes,

CLFLUSH (which, like the x86 CLFLUSH instruction,

flushes a line from the cache), conditional branches,

and full fences. The pipeline implements the Total

Store Order MCM. Other micro-ops and/or MCMs

are easy to add or implement as desired; the Check-

Mate approach is easily extensible.

Automatic Synthesis of Meltdown and Spectre

Figure 2 features mhb graphs synthesized

by CheckMate, which correspond to security

litmus test programs representative of the

publicly disclosed Meltdown and Spectre

attacks. The pattern from Figure 1(c) that

seeded synthesis is highlighted in red nodes

and edges and rectangles shaded with hori-

zontal red lines and diagonal gray lines in

each graph. The security litmus test itself is

listed at the top of each graph with per-core

micro-op sequencing from left to right. As the

figures show, the security litmus test is the

most abstracted form of each attack; it only

applies to a single virtual address. We also

note that CheckMate outputs detailed meta-

data such as the

1) index that each virtual (or physical, if physi-

cally mapped) address maps to in each

cache;

2) physical address that each virtual address

maps to;

3) physical core that amicro-op executes on;

4) process access permissions for each address;

5) cacheability attributes of virtual addresses.

For clarity, Figure 2 includes a simplified

subset.

The Meltdown graph in Figure 2 demon-

strates how the lack of synchronization between

the PC of a memory access and the fetching of

said memory location into the cache can induce

the FlushþReload pattern [see Figure 1(c)]. The

Spectre graph in Figure 2 demonstrates a similar

scenario, but the lack of synchronization is

between the evaluation of the branch outcome

in the Execute stage of the branch and any

subsequent fetching of cache lines. We note that

in our synthesized exploits, an Attacker (A) pro-

cess represents the Attacker executing ins-

tructions or a Victim (V) executing Attacker-

influenced instructions due to a branch or jump

misprediction.

Other significant Meltdown and Spectre

variants synthesized by CheckMate include

those which have a write instead of a read

for the speculative attacker access which

brings the flushed address back into the cache.

This is due to modeling a write-allocate

cache. CheckMate also generated variants
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representative of EvictþReload attacks—

rather than a flush instruction, they use a

colliding memory operation to evict a line of

interest from the cache to initiate the attack.

Our additional synthesized security litmus

tests are provided online.3

We make two key observations from these

results. First, although manual efforts left Spec-

tre and Meltdown undetected for decades,

CheckMate was able to synthesize them auto-

matically. We believe tools like CheckMate will

be important tools in every architect’s toolbox

moving forward; it shifts security analysis from

ad hoc inspection toward more thorough and

automated techniques. Second, mhb graphs

are instructive and can suggest edges whose

addition mitigates an exploit by rendering the

graph cyclic. This type of clear feedback will

also be very useful for architects looking

to patch vulnerabilities early, before the hard-

ware is released into the wild.

Synthesizing New Exploits: MeltdownPrime and

SpectrePrime

Figure 2 depicts mhb graphs synthesized by

CheckMate which correspond to security litmus

Figure 2. Synthesized mhb graphs showing selected security litmus test executions for conducting Meltdown (left) and

Spectre (right). Both exploit the FlushþReload pattern in Figure 1(c). Some hardware locations have been omitted from the

graphs for clarity as they do not contribute to the exploit. CF represents a CLFLUSH micro-op. B PNT, T represents a

branch that is mispredicted as “not taken.”

Figure 3. Synthesized mhb graphs showing selected security litmus test executions for conducting MeltdownPrime (left)

and SpectrePrime (right). Both exploit the PrimeþProbe pattern in Figure 4(b) of the original paper.11 As in Figure 2, some

hardware locations have been omitted for clarity. CF represents a CLFLUSH micro-op. B PNT, T represents a branch that is

mispredicted as “not taken.”
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test programs representative of our new Melt-

downPrime and SpectrePrime attacks. These new

exploits rely on invalidation-based coherence pro-

tocols in combination with PrimeþProbe attacks.

In particular, by exploiting speculative cache inva-

lidations, MeltdownPrime and SpectrePrime can

leak victim memory at the same granularity as

Meltdown and Spectre while using a PrimeþProbe

timing side channel. The pattern from Figure 4(b)

in the original conference paper6 that seeded syn-

thesis is highlighted in red nodes and edges and a

rectangle shaded with diagonal gray lines in each

of the generated examples. The security litmus test

is again listed at the top of each graph.

In the inputmicroarchitecture used to synthe-

size these attacks, we model the sending and

receiving of coherence request and response

messages that enable a core to gain write and/or

read permissions for a memory location. Due to

this level of modeling detail, we are able to cap-

ture perhaps surprising coherence protocol

behavior. Specifically, the coherence protocol

may invalidate cache lines in sharer cores as a

result of a speculative write access request even

if the write is eventually squashed. These Check-

Mate-generated attacks are split across two cores

tomake use of coherence protocol invalidations.

Some other notable CheckMate-synthesized var-

iants of our Prime attacks featured a CLFLUSH

instruction instead of the write access for themech-

anism by which an eviction is caused on another

core. This is under the assumption of cache inclu-

sivity, that such a flush instruction exists, and that

virtual addresses can be speculatively flushed. We

have not observed this speculative flushing variant

on real hardware. Nevertheless, the synthesis of all

of these attack variants is a testament to the gener-

ality of the CheckMate tool.

Early-Stage Verification With Interactive

Runtimes

The axiomatic microarchitecture models

used by CheckMate can be constructed early in

the hardware design process. As demonstrated

by our case study, arbitrary complexity in the

design specification is not necessary for synthe-

sizing real-world exploits. In other words, secu-

rity vulnerabilities that affect complex processor

designs can be synthesized from rather abstract

axiomatic representations of hardware. This

feature enables hardware security verification

to be moved much earlier in the design cycle of

a microarchitecture so that vulnerabilities can be

preemptively mitigated.

Furthermore, our optimizations (discussed in

Section V of the original paper6) enable exploit

program synthesis with CheckMate to achieve run-

times on the order of minutes for synthesizing the

first security litmus test for a vulnerable micro-

architecture and on the order of minutes to hours

for synthesizing all possible security litmus tests

within a user-specified bound. These interactive

runtimes are also important for the type of early-

stage analysis CheckMate is intended to conduct.

Specifically, they enablemicroarchitects andother

computer systems designers to iterate on their

designs and specifications to achieve security.

BROADER IMPACT OF CHECKMATE:
A “FISHING POLE” FOR IDENTIFYING
HARDWARE SECURITY
VULNERABILITIES

Over the past few decades, performance and

power have become first-class design metrics

that architects assess and optimize for early in

the design process. In other words, rather than

waiting to have a final working prototype, tools

exist for conducting early-stage analysis. Check-

Mate demonstrates that security can be viewed

in a similar way. In particular, CheckMate pro-

vides hardware systems architects with an auto-

mated tool for conducting early-stage hardware

security verification. Despite abstract models

that enable fast runtimes, CheckMate has dem-

onstrated its value by identifying vulnerabilities

that affect commercial processors.

CheckMate provides hardware designers

with a new way to rigorously and systematically

evaluate susceptibility of a microarchitecture to

specified exploit classes. Hardware designs are

complex and support their architectural specifi-

cations through a range of hardware-specific

orderings and optimizations. Without formal and

automated techniques, this hardware complex-

ity in combination with process- and system-

level implementation detail significantly compli-

cates the task of achieving full-system security.

Rather than relying on ad hoc “brainstorming”

approaches for discovering new implementa-

tion-specific security vulnerabilities, CheckMate
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provides a principled alternative rooted in tech-

niques that have proven useful in the MCM veri-

fication space.

In addition to enabling early-stage hardware

vulnerability detection, CheckMate can be used to

evaluate both hardware and software mitigation

strategies for identified exploits. As an example,

the computer architecture community is working

to develop optimal mitigation techniques for

Spectre-like attacks: prohibiting speculation when

it is potentially harmful while permitting forms of

speculation that are indeed safe. Whether such

mitigations are implemented in hardware, soft-

ware, or some combination thereof, CheckMate

can be used to determine if the target vulnerabil-

ities are indeedmitigated.

Drawing from composable axiomatic specifica-

tions of microarchitecture and systems features,

CheckMate integrates analysis across different

modules to be more comprehensive than manual

or prior approaches. Hardware designers, sys-

tems designers, and security experts can collec-

tively use CheckMate to verify the security of

computing systems. Overall, our work showcases

the power and applicability of CheckMate for ana-

lyzing and protecting against a wide range of secu-

rity vulnerabilities. In the future, we envision the

CheckMate approach serving as the primary

mechanism by which industrial-scale processor

designs are verified secure against the wide range

of confidentiality and integrity attacks rooted in

event ordering issues.

SIDEBAR: HARDWARE SECURITY
EXPLOITS

Side-channel attacks have demonstrated that

observable state is not limited to architectural

state; rather, it also includes nonarchitectural

state (e.g., CPU caches). Nonarchitectural state

cannot be directly accessed by user-facing

instructions, but nevertheless can be detected

(e.g., with a simple side-channel attack) and lead

to information leakage. Furthermore, a new wave

of side-channel attacks has revealed that non-

architectural state can be modified by specula-

tively executed instructions in addition to those

that commit. Thus, CheckMate supports model-

ing of nonarchitectural state as well as specula-

tion. This sidebar gives an overview of how some

hardware features (specifically, those most

relevant to our case study) can be leveraged to

induce information leakage.

Cache Timing Side-Channel Attacks

Side-channel attacks threaten confidentiality

by exploiting implementation-specific behaviors

with measurable dynamic state, for example, exe-

cution time, updates to storage elements, power

consumption, resource sharing, acoustics, and

radiation. Cache-based side-channel attacks specif-

ically target cache occupancy and rely on the

attacker being able to differentiate between

cache hits and misses. Most cache side-channel

attacks leverage timing as the key mechanism for

distinguishing cache hits from cachemisses.12

Attackers monitor access times of their own

or the victim’s memory accesses in order to

infer information about victim memory.

“Access-driven” and “timing-driven” attacks

both traditionally measure differences in

access time. Access-driven attacks measure

timing of a single memory operation, whereas

timing-driven attacks measure timing of an

entire security-critical operation. While the

CheckMate approach can handle any security

exploit scenario resulting from hardware-spe-

cific event orderings and interleavings during a

program’s execution, our case study focuses

on two categories of access-driven cache side-

channel attacks: PrimeþProbe and FlushþRe-

load. FlushþReload is the exploit pattern lever-

aged by the original Meltdown and Spectre

attacks, and PrimeþProbe is used by our case

study later in this paper.

In traditional PrimeþProbe attacks, the

attacker first primes the cache by populating one

or more sets with its own lines, and then it allows

the victim to execute. After the victim has exe-

cuted, the attacker probes the cache by reaccess-

ing its previously primed lines, timing the

accesses for classification as a cache hit or a cache

miss. Longer access times (i.e., cachemisses) indi-

cate that the victimmust have touched an address

mapping to the same cache set as a primed loca-

tion, thereby evicting the attacker’s line.

Traditional FlushþReload attacks have a

similar goal to PrimeþProbe but rely on shared

virtual memory between the attacker and

victim (e.g., shared read-only libraries or

page deduplication), and the ability to flush by
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virtual address (e.g., with the x86 CLFLUSH

instruction). The advantage of FlushþReload

attacks is that the attacker can identify a spe-

cific line accessed by a victim rather than just

a cache set. The

attacker initiates

FlushþReload by

flushing one or

more shared lines

of interest, and

subsequently

allows the victim

to execute. After

the victim has exe-

cuted, the attacker

reloads the previ-

ously flushed lines,

timing the accesses

to determine if said

lines were pre-

loaded by the victim. A similar attack, EvictþRe-

load, does not rely on a special flush instruction,

but instead on evictions caused by cache colli-

sions; consequently, the attacker must be able to

reverse-engineer the cache-replacement policy.

One fundamental insight of the recent wave of

speculation-based side-channel attacks, such as

Meltdown and Spectre, is that microarchitectural

speculation can be used to construct a side-chan-

nel attack that does not require shared virtual

memory between the attacker and the victim. We

describe this next.

Why Speculation Matters

Many processors employ hardware optimiza-

tions such as speculative execution to improve

performance. Speculative execution permits

instructions to initiate execution before it is

known that they will commit. As such, incor-

rectly speculated instructions will be squashed

after they have begun executing. Until recently,

it was assumed that “erasing” all architecturally-

visible effects of squashed instructions was

sufficient to ensure that speculation would not

lead to any harmful side effects.

Unfortunately, 2018’s series of speculation-

based attacks leverage the effects of speculative

execution on nonarchitectural state to leak-sensi-

tive information into a side channel for extraction

via some well-known cache side-channel attack. As

a specific example, Meltdown and Spectre leverage

the effects of speculative execution on cache state

in combination with a FlushþReload attack. Since

a CPU cache can be polluted by instructions that

are eventually squashed, even if all architecturally

visible effects are erased, microarchitectural

effects remain that can be observed. This can

result in the leakage of privileged data via the

following steps.

1) The attacker sets up its Meltdown/Spectre

exploit by performing the Flush step of a

FlushþReload attack.

2) The attacker induces speculative execution of

a read instruction that accesses sensitive

(In some cases (e.g., Meltdown), the data being

leaked lives in a different architectural privilege

level. In other cases (e.g., Spectre v2), both

attacker and victim data live in the same archi-

tectural privilege level, but each may be accessi-

ble only by certain parts of the program

(e.g., from within versus outside a sandbox). To

make the distinction clear, we define sensitive

data as that which should only be accessible by

the victim, and nonsensitive data as that which

is accessible by the attacker. Meltdown and

Spectre perform this step differently (see next).

3) While in the window of speculative execu-

tion, the attacker accesses nonsensitive data

whose address is dependent (via address cal-

culation) on the sensitive data returned by

step 2’s read access.

4) The attacker performs the Reload step of a

FlushþReload attack to determine the

address of the nonsensitive memory access

from step 3.

5) From the address result of step 4, the

attacker determines the sensitive data that

were used to calculate it in step 3.

& REFERENCES

1. P. Kocher et al., “Spectre attacks: Exploiting

speculative execution,” Jan. 2018. [Online]. Available:

https://arxiv.org/abs/1801.01203

2. M. Lipp et al., “Meltdown,” Jan. 2018. [Online].

Available: https://arxiv.org/abs/1801.01207

3. M. Martonosi et al., “Check: Research tools and

papers,” 2017. [Online]. Available: http: //check.cs.

princeton.edu

One fundamental

insight of the recent

wave of speculation-

based side-channel

attacks, such as

Meltdown and Spectre,

is that microarchitec-

tural speculation can

be used to construct a

side-channel attack

that does not require

shared virtual memory

between the attacker

and the victim.

Top Picks

92 IEEE Micro

https://arxiv.org/abs/1801.01203
https://arxiv.org/abs/1801.01207
http: //check.cs.princeton.edu
http: //check.cs.princeton.edu


4. E. Torlak and D. Jackson, “Kodkod: A relational

model finder,” in Proc. 13th Int. Conf. Tools

Algorithms Construction Analysis Syst., 2007.

5. D. Jackson, “Alloy analyzer website,” 2012. [Online].

Available: http://alloy.mit.edu/

6. C. Trippel, D. Lustig, and M. Martonosi, “CheckMate:

Automated exploit program generation for hardware

security verification,” in Proc. 51st Int. Symp.

Microarchit., 2018.

7. J. Alglave, L. Maranget, S. Sarkar, and P. Sewell,

“Litmus: Running tests against hardware,” in Proc.

17th Int. Conf. Tools Algorithms Construction Analysis

Syst., Part Joint Eur. Conf. Theory Practice Software,

2011.

8. S. Hangal, D. Vahia, C. Manovit, and J.-Y. J. Lu,

“TSOtool: A program for verifying memory systems

using the memory consistency model,” in Proc. 31st

Annu. Int. Symp. Comput. Archit., 2004.

9. D. Lustig, A. Wright, A. Papakonstantinou, and

O. Giroux, “Automated synthesis of comprehensive

memory model litmus test suites,” in Proc. 22nd Int.

Conf. Archit. Support Program. Lang. Operating Syst.,

2017.

10. S. Mador-Haim, R. Alur, and M. M. K. Martin,

“Generating litmus tests for contrasting memory

consistency models,” in Proc. 22nd Int. Conf. Comput.

Aided Verification, 2010.

11. C. Trippel, D. Lustig, and M. Martonosi,

“MeltdownPrime and SpectrePrime: Automatically-

synthesized attacks exploiting invalidation- based

coherence protocols,” arxiv:1802.03802, 2018.

[Online]. Available: http://arxiv.org/abs/1802.03802

12. Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey

of microarchitectural timing attacks and

countermeasures on contemporary hardware,”

J. Cryptogr. Eng., vol. 8, pp. 1–27, 2016.

Caroline Trippel is currently a PhD student in the

Computer Science Department, Princeton University.

Her research focuses on computer architecture,

with a particular emphasis on concurrency and secu-

rity verification in heterogeneous parallel systems.

She has an MS in computer science from Princeton

University. She is a student member of the Associa-

tion for Computing Machinery (ACM). Contact her

at ctrippel@princeton.edu.

Daniel Lustig is a senior research scientist at

Nvidia. His research focuses on architecting efficient

and correct memory systems, with a particular focus

on memory consistency models. He has a PhD in

electrical engineering from Princeton University.

He is a member of the Association for Computing

Machinery (ACM) and the IEEE. Contact him at

dlustig@nvidia.com.

Margaret Martonosi is the Hugh Trumbull Adams

’35 Professor of Computer Science at Princeton Univer-

sity. Her research focuses on computer architecture

and mobile systems, with a particular emphasis on

verification, performance, and power efficiency in het-

erogeneous systems. She has a PhD in electrical engi-

neering from Stanford University. She is a Fellow of the

IEEE and the Association for Computing Machinery

(ACM). Contact her at mrm@princeton.edu.

May/June 2019 93

http://alloy.mit.edu/
http://arxiv.org/abs/1802.03802
mailto:
mailto:
mailto:


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


