
Specifying, Verifying, and Translating

Between Memory Consistency Models

Daniel Joseph Lustig

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Electrical Engineering

Adviser: Professor Margaret Martonosi

November 2015



© Copyright by Daniel Joseph Lustig, 2015.

All rights reserved.



Abstract

Gone are the days when single-threaded performance was the primary metric of in-

terest for a processor design. Driven by increasingly tight power constraints and by

the slowing down of Moore’s law and Dennard scaling, architects have turned to mul-

ticore parallelism and architectural heterogeneity as a means to continue delivering

increases in chip performance and power efficiency. Both approaches can deliver im-

proved performance per watt characteristics at the expense of creating systems which

are dramatically more complex to design and harder to program.

In order to share data and coordinate their actions, the compute elements (e.g.,

CPU cores, GPU cores, accelerators) in modern processors communicate via shared

virtual memory. In this model, regardless of the underlying physical reality, cores

see the abstraction of a single unified address space shared with the other processing

elements in the system. Communication through shared virtual memory takes place

according to a memory consistency model—the set of rules and guarantees about

the ordering and visibility of memory accesses issued by one processing element and

observed by other processing elements. Unfortunately, in practice, hardware consis-

tency model definitions frequently suffer from a lack of formalism, precision, and/or

completeness, resulting in numerous situations in which the correct outcome(s) for a

given scenario may be ambiguous or even simply undefined. To solve these problems,

this thesis develops formal analysis techniques, specification formats, and automated

tools that aim to mitigate the problems of incompleteness, imprecision, and/or in-

compatibility among memory consistency models.

First, this thesis proposes Memory Ordering Specification Tables (MOSTs), a

systematic method for fully and explicitly enumerating the memory ordering re-

quirements of axiomatic memory models. The architecture- and model-independent

approach used by the MOST format allows for the direct comparison of preserved

program order, fences, and other ordering enforcement mechanisms from the same
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or even from different models. In particular, it allows for the direct comparison of

models that are weakly-ordered (e.g., ARM, IBM Power, GPUs), strongly-ordered

(e.g., sequential consistency, SPARC/x86 Total Store Ordering), or points in be-

tween. This thesis also presents the ArMOR framework for systematically analyzing

and manipulating MOSTs. As a demonstration of the power of ArMOR, this thesis

presents a methodology for automatically and dynamically translating code compiled

under the assumptions of one memory model into code which can be executed by a

(micro)architecture implementing a different memory model. By analyzing MOSTs

for the source and destination architectures, ArMOR analysis can be used to produce

optimized, self-contained translation engines called shims. The shim designs can be

derived offline and in advance, and they can be easily implemented in software or

hardware with manageable performance overhead.

Second, this thesis proposes PipeCheck, a framework for verifying the correctness

of particular implementations of a given architectural memory model. PipeCheck

defines a domain-specific language for specifying memory ordering behavior at the

microarchitecture level. This language allows PipeCheck to explicitly specify and

verify the behavior of common microarchitectural optimizations such as specula-

tive load reordering which are intentionally abstracted away by higher-level mod-

els. PipeCheck’s fast constraint solver software quantifies in just minutes whether

an implementation is stronger than, weaker than, or equal in strength to its memory

model requirements. It also reduces a currently intractable problem—verifying reg-

ister transfer level (RTL) hardware descriptions against architectural memory model

requirements—into a much more tractable task: verifying RTL against a set of locally-

scoped, per-pipeline stage ordering properties. This thesis applies PipeCheck at a

number of locations within a processor: within the pipeline, within the cache coher-

ence protocol, and at the coherence/consistency interface, and it demonstrates the

practicality of rigorously analyzing a broad range of microarchitectural scenarios.
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In summary, this thesis presents architects with new techniques for reducing the

complexity of defining memory consistency models and building systems that correctly

implement them. In doing so, it narrows the existing gap between performance-first

architectural design methodologies and rigorous verification of implementation cor-

rectness. As hardware and software complexity and dynamism continue to grow, the

techniques developed in this thesis will help designers avoid the memory model bugs

that continue to appear in hardware even today, and they will present programmers,

compiler writers, and runtime systems with usable, precise descriptions of the memory

ordering behaviors of any simple or complex computing system.
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Chapter 1

Introduction

1.1 Motivation

Over the second half of the twentieth century, general-purpose computing developed

from a theoretical exercise into a practical and ubiquitous reality. In 1936, Alan

Turing invented what is now called a universal Turing machine, an idea which is now

widely considered as the theoretical basis for the modern notion of a computer [Tur37].

ENIAC, cited by many as the world’s first fully-digital general-purpose computer1,

was publicly unveiled in 1946 [EM]. The first stored-program computer, the Manch-

ester Small-Scale Experimental Machine, ran its first program in 1948 [Cen15]. The

first commercially-available general-purpose digital computer, the Ferranti Mark 1,

was purchased in 1951. By the end of the century, fundamental technology advances

such as the bipolar transistor, the integrated circuit, CMOS logic, and corresponding

advances in software and design technologies drove computing from being a niche

application into the commodity that it remains today.

The first half-century of digital computing followed a number of remarkable trends.

Gordon Moore, based on a few early observations, predicted in 1965 that transistor

1Other competitors for this or similar claims include the Atanasoff-Berry Computer, the Colossus
Machine, and the Z3 [Com15]. I acknowledge my personal bias towards ENIAC, if only because I
received by bachelor’s degree from the University of Pennsylvania, where ENIAC was created.
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density would double roughly every two years [Moo65]. This phenomenon, popularly

dubbed Moore’s Law, combined with improvements to the architectures of the pro-

cessors themselves to lead to a doubling of performance roughly every 18 months.

Likewise, Dennard et al. observed in 1974 that by scaling supply voltage downwards

with transistor area, transistor power density would be roughly constant [DGY+74].

Dennard scaling, together with Moore’s law, allowed for high levels of integration,

giving high performance at manageable power. Although these trends were generally

extrapolated from no more than a few data points, each remarkably held true for

decades, leading them to be popularly classified as “laws” and to guide the progress

of the semiconductor industry for nearly half a century.

Unfortunately, in the early 2000s, computing hit the power wall [BC11, KM08,

SKM15]. Dennard scaling started to break down around 2005, as the power con-

sumption and thermal dissipation requirements of increasingly smaller and faster

transistors became impossible to satisfy. This breakdown brought about an end to

the exponential growth in single-core performance seen during the previous decades,

and it drove the industry to shift to multicore processors as a way to deliver continued

processor performance scaling [ABC+06, HM08]. The ability to extract and make ef-

ficient use of parallelism hence became a prerequisite for making the most use of the

hardware. Multicore processors are now found throughout most major segments of

the industry, from mobile devices to laptops and desktops to supercomputers.

As a consequence of the paradigm shift to multicore processors, shared memory

parallelism has taken on renewed importance. While software parallelism models can

(and do) vary widely, at a hardware level, the predominant paradigm is for the cores

in a multicore processor to synchronize and communicate data by reading and writing

into a shared memory space. This communication and synchronization takes place

according to the memory consistency model : the set of rules specifying how and when

accesses made by each core become visible to other cores. Unfortunately, the process
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of building consistency models and synchronization primitives that are correct, high-

performance, and easy to use has proven notoriously difficult over the decades, and

so memory models remain the subject of ongoing research even today.

Lamport defined sequential consistency (SC), the first explicit memory consis-

tency model, in 1979 [Lam79]. Sequential consistency (then and today) represents

the most intuitive model of shared memory concurrency. It states, roughly, that

concurrent programs behave as if they were a single-threaded program formed by

interleaving the instructions from each thread. SC was notable for formalizing the

rules that many programmers were implicitly assuming about the behavior of parallel

programs, particularly in light of the fact that even then, concurrent hardware did

not always enforce SC. Today, most computer architects consider the performance

of sequentially consistent processors to be too low to be commercially competitive.

In modern processors, the requirements of sequential consistency are routinely vio-

lated by hardware optimizations such as memory access reordering and store buffer-

ing [AMD13, ARM13, IBM13, Int10, Int13a].

In 1986, Dubois et al. proposed the idea of defining a weak memory model—one

which is weaker (i.e., more permissive) than SC [DSB86]. Weak memory models

present a different (usually more complicated but higher-performance than SC) set

of rules for shared memory communication. In this approach, the burden of building

correct communication and synchronization primitives is shifted onto the program-

mer and/or the programming language, as either or both must be able to understand

and reason about the increasingly complicated set of rules governing cross-core com-

munication.

In spite of the significant added complexity that weak memory models bring,

nearly all modern multicore processors implement some form of weak memory model.

The shift of computing into the multicore era drove a renewed practical interest

in memory consistency model research in the 2000s, and this led to efforts to im-
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prove and formalize the memory models used by C/C++ [BA08], Java [MPA05],

x86(-64) [OSS09a], and Power [AMT14, MHMS+12, SSA+11], among others. How-

ever, numerous challenges remain. On one hand, memory model analyses following

a formal mathematical approach are sufficiently challenging that they tend to take

place on the timeframe of years, rendering them unable to fully adjust to the fast-

moving world of computing. On the other hand, with every advance in the scien-

tific understanding of memory models comes another discovery that some existing

model or framework is broken, thereby revealing just how challenging these problems

are [ABD+15, ND13, VBC+15].

Although memory models have been studied for decades, two contemporary trends

in computer architecture are further increasing the difficulty of specifying and rea-

soning about memory consistency models. First of all, many modern systems are

architecturally heterogeneous—they contain processor cores and/or other components

which have varying instruction sets and therefore, usually, varying memory consis-

tency models. The GPGPU paradigm, in which a graphics processing unit (GPU) per-

forms general-purpose (GP) computation in collaboration with a CPU, is one notable

example, but mobile systems-on-chip (SoCs) may contain as many as a half dozen dif-

ferent components with different instruction sets and MCMs [Qua15, Tex10]. Second,

the traditional abstractions of programming language, architecture, and microarchi-

tecture are becoming increasingly blurred. Intermediate representations such as Java

bytecode and LLVM IR are increasingly commonly being used as semi-permanent rep-

resentations of code, and “virtual instruction sets” such as NVIDIA PTX [NVI13b]

and HSAIL [HSA13] are diminishing the dominance of any one particular hardware

instruction set. Concurrent with this trend is an increase in the popularity of dynamic

just-in-time (JIT) compilers [NVI13a, Khr], optimizers [NVIb], and binary transla-

tors [DVT12, VT14], cases for which the memory consistency implications have not

been as widely studied. These two trends show the importance of having memory
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consistency model analysis techniques which are flexible enough to adapt to such

rapidly-changing conditions.

This thesis bridges the gap between the benefits of rigorous formalism and the

need for practical applicability in memory model analysis, all while addressing the

recent trends discussed above. The next section describes some of the key challenges

that arise in this space, and it lays out the specific goals for this thesis.

1.2 Research Challenges and Goals

The past three decades have shown that specifying and reasoning about weak memory

models is extremely difficult and prone to numerous pitfalls and unexpected corner

cases. In fact, it remains a challenge even to precisely and completely define models

such as C++, Java, ARM, or Power which are nevertheless in widespread use. Fur-

thermore, since the software memory model needs to be implemented in terms of the

hardware memory model of the processor on which it will execute, the job of building

tools such as compilers in a way that correctly accounts for memory models is itself

a significant additional challenge [BMO+12, VBC+15].

Existing approaches and models are insufficient in various ways. For example:

• They are imprecise: many industry specifications are written in natural lan-

guage and are often too vague to be used to analyze certain cases [AMD13,

ARM13, IBM13, Int13a, NVI13b].

• They are incomplete and/or incompatible: e.g., there are cases in which

various recent formalizations of the Power memory model disagree with each

other [SSA+11, MHMS+12, AMT14].

• They are impractical and/or inaccessible: e.g., the Java memory model is con-

sidered by many to be difficult to use in practice due to its “replay” approach

to deriving valid executions [PVJ15].
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• They are unsound: e.g., numerous early iterations of the C++, Java, and Power

memory models were shown to disagree with the realities of the underlying

implementations [Alg12, BOS+11, SSA+11, ŠA08] and each model continues to

be refined even today [Bat04, BMO+12].

As a result of the above shortcomings, it remains difficult to analyze the mem-

ory consistency model implications of building new microarchitectures, toolchains,

and programming languages. Even when model definitions exist, they may not be

practical to use. For one thing, nearly all existing models are, by necessity, ab-

stracted somewhat from the full realities of the microarchitecture. For another, user-

friendly tools which allow non-experts to analyze the memory model behavior are

often either non-existent [MHMS+12] or prone to state space explosion [SSA+11].

As a result, determining correct and optimal mappings for critical standard data

structures onto weak memory models remains an active area of research even to-

day [BMO+12, LGCP13, LPCZN13].

An additional ongoing challenge is to ensure that hardware being built and shipped

to customers is correct with respect to its specification. There have been numerous

(in)famous examples of bugs appearing in all parts of the processor, and the memory

system is no exception. Although the memory consistency model is more precisely and

formally defined than many other components of the processor design, the tools which

allow these formalisms to be applied to practical microarchitectural use cases are still

not sufficiently developed. This fact leads bugs such as those in implementations of

transactional memory [Int15], load-load reordering [ARM11, Elv], or fences [ABD+15]

to continue to appear in hardware even today. The trend towards increased architec-

tural heterogeneity and the blurring of abstractions in the hardware-software stack

will only serve to make these problems more challenging.

In response to the above challenges, this thesis focuses on specifying, verifying,

and translating between memory consistency models. It does so in a way that bridges
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the gap between formal analysis methods and practical microarchitectural use cases.

In particular, it applies rigorous methodologies to the analysis of microarchitecturally-

important cases such as out-of-order execution, speculative reordering, partially inco-

herent caches, virtual-to-physical address translation, and coherence protocols which

violate the formal specifications of coherence. It also builds practical tools which can

be used to analyze both currently relevant and forward-looking use cases. The rest

of this chapter outlines the approach taken to overcome the challenges and to solve

the goals described above.

1.3 Defining Memory Models in an Architecture-

Independent Manner

One shortcoming of existing approaches to defining memory models is that in general,

two unrelated memory models cannot easily be directly compared. In the best case,

the two models may each be specified using some precise formalism, but unless the

two formalisms use matching approaches and notations, it is difficult or impossible to

simply take a component from one model and map it into the language of the other.

Instead, the process of deriving a correct mapping between two models generally re-

quires either a conservative over-approximation or a custom third formalism consisting

of manual proofs that often take years to complete [BMO+12, LPCZN13, SMO+12].

This fact makes it difficult to reliably build compilers, dynamic binary translators, or

any other mechanism which has to perform such cross-model mappings.

Chapter 3 presents the Memory Ordering Specification Table (MOST), an

architecture-independent and model-independent specification format for memory

models [LTPM15a, Lus15]. MOSTs provide a precise, self-contained notation for

defining the memory ordering requirements or enforcements of the various individual

components of a memory model. MOSTs describe preserved program order (PPO,
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i.e., the set of orderings enforced by hardware by default), fences, inter-instruction

dependencies, and all other forms of ordering mechanism used by a model. Taken

together, the MOSTs for each individual component collectively form the definition

of the memory model in question.

The benefit of the MOST specification format is that by providing a common

model-independent language, any two MOSTs can be compared to each other, even

when the MOSTs originate from unrelated memory models. In addition to MOSTs

themselves, Chapter 3 also presents the ArMOR framework, a primitive “arithmetic”

on MOSTs which can be used to analyze, compare, and manipulate MOSTs. Ar-

MOR enables MOSTs to be flexibly applied in compilers, dynamic translators, and

other interesting use cases. The ArMOR framework is released as an open-source

tool [Lus15].

1.3.1 Dynamic Migration Between Consistency Models

A key benefit of the ArMOR framework is that it enables new memory consistency-

related use cases which were not previously feasible to build. Chapter 4 highlights the

example of dynamic binary translators (DBTs) that translate between different in-

struction set architectures (ISAs) [LTPM15a]. Although cross-ISA binary translation

has been shown to deliver performance and/or energy benefits, existing frameworks

simply do not address the memory consistency implications of doing so [DVT12,

VT14]. Likewise, existing architectural emulators such as the Android emulator and

QEMU implement single-threaded backends in order to simply avoid the memory

model issue altogether [Goo15, Qem15].

Chapter 4 presents an in-depth case study of using MOSTs and the ArMOR

framework to build memory-model-aware dynamic binary translators. Given the set

of MOSTs defining the source and target memory models, this chapter presents an

algorithm for automatically deriving shims, or small, self-contained translation mod-
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ules which automatically insert fences or other ordering mechanisms as needed. This

chapter demonstrates that both software and hardware shim implementations have

low to negligible performance overheads, making them practical to implement. The

appendix to this thesis also presents a gallery of shims for different scenarios. The

code used to generate this appendix is open source as well [Lus15]. The chapter con-

cludes by considering extended use cases such as optimization via dynamic removal

of redundant fences and by presenting a broader view of the ways in which future

architectures can make the analysis and implementation of such technologies easier.

1.4 Microarchitecture-Level Memory Consistency

Models

Even though hardware memory models are intentionally abstracted from the details

of any one particular implementation, they are often nevertheless inspired by some

class of microarchitectural features. For example, microarchitectural store buffering

inspired the design of processor consistency and SPARC total store ordering (TSO),

and some models contain explicit references to microarchitectural features such as

branch prediction [SSA+11, PVJ15]. Nevertheless, the models are intentionally de-

signed to be portable across varying implementation for the sake of backward/forward

compatibility: a memory model may be implemented by more than one company (e.g.,

TSO by SPARC/Oracle [SPA94b], Intel [Int13a], AMD [AMD13], and others) and/or

by more than one chip produced by the same company (e.g., Intel Haswell/Broad-

well “big cores”, Bonnell/Silvermont “small cores”). This fact means that by design,

existing models cannot specify behaviors specific to any one implementation. As a

result, existing frameworks cannot generally be applied either to microarchitectural

verification or to scenarios such as modern GPUs which do not have well-defined

architecture-level memory model specifications.

9



Chapter 5 introduces PipeCheck, a methodology and open-source tool for veri-

fying the correctness of a given microarchitecture against a given architecture-level

memory model specification [LPM14, LPM15, Lus14]. PipeCheck provides a domain-

specific language (DSL) for defining a multi-event axiomatic model of the memory

consistency behavior of one particular microarchitecture. It uses this model to quickly

and automatically identify cases in which the microarchitecture may be stricter than

necessary (e.g., an SC implementation of TSO) or weaker than necessary (e.g., due

to an implementation bug).

Specifically, PipeCheck defines the memory ordering behavior of a pipeline using

a set of microarchitecture-specific ordering axioms: some defining per-instruction be-

havior, some defining per-pipeline stage behavior, and some defining other relevant

ordering enforcement behaviors. For example, an axiom may state (using more formal

language) that “the decode stage is FIFO” or that “a load may either take a cache

hit, take a cache miss, or forward from the store buffer”. PipeCheck then determines

whether any executions which violate the architecture-level specification are observ-

able in terms of the axioms provided. The axioms are designed with the intention

that, to the extent possible, they can be verified and analyzed entirely independently.

In this way, the PipeCheck methodology as a whole therefore reduces the burden of

verifying a particular pipeline as a whole to the more tractable problem of verifying

the localized behaviors of individual pipeline stages or events.

There are numerous microarchitectural components which play a role in mem-

ory ordering: the pipeline, the cache hierarchy, the address translation mechanisms,

the networks-on-chip (NoCs), and so on. The analysis of various microarchitectual

subsystems using the PipeCheck methodology is organized as described below.
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1.4.1 Pipeline Models

Chapter 5 focuses on the role of the pipeline itself in enforcing the memory consis-

tency model [LPM14, LPM15]. The memory hierarchy itself often provides little to

no ordering guarantees beyond some form of cache coherence, leaving the pipeline

largely responsible for enforcing consistency guarantees. Likewise, fences or other

explicit ordering mechanisms are generally enforced within the pipeline itself; such

mechanisms do not often propagate explicitly to the memory system. Nevertheless,

the pipeline may itself contain a number of performance optimizations which may

themselves introduce weak memory behavior. Chapter 5 therefore demonstrates how

to verify pipelines containing optimizations such as of out-of-order execution, specu-

lative load reordering, or other similar mechanisms.

1.4.2 Cache and Memory System Models

While Chapter 5 abstracts away much of the behavior of the cache hierarchy, Chap-

ter 6 highlight ways in which specific low-level behaviors of certain cache hierar-

chies may need to be addressed explicitly [MLPM15]. For example, although most

architecture-level memory models contain some formal notion of coherence, there are

cases in which particular cache coherence protocols may in fact violate certain in-

terpretations of the word “coherence”, as “coherence” is defined in varying ways by

different authors. Adding an explicit model of the coherence-consistency interface

(CCI) to PipeCheck allows it to verify that the microarchitecture as a whole con-

tinues to implement the memory model correctly, given the precise behavior of the

coherence protocol.

CCICheck extends the methodology and software implementation of PipeCheck

to explicitly model the behavior of a particular cache coherence protocol. CCICheck

provides the key innovation of the value-in-cache-lifetime (ViCL), an abstraction of

the lifetime of a given piece of data being held in a particular cache line in some spe-
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cific cache. The ViCL abstraction allows CCICheck to explicitly and scalably model

behaviors such as cache hits vs. cache misses, incoherent caches, and lazy cache inval-

idation, and these models allow CCICheck to verify the correctness of each behavior

with respect to the memory model. The chapter concludes with an exploration of

how CCICheck can be used to verify the correctness of various coherence protocols

which have been recently proposed in the academic literature.

1.4.3 Address Translation

A related but less-studied question is the role that virtual-to-physical address trans-

lation plays in the specification and verification of memory consistency models. Ro-

manescu et al. [RLS10] brought attention to the fact that problems such as TLB

synonyms—two virtual addresses which map to the same physical address—can im-

ply ordering requirements that cannot be inferred from virtual or physical addresses

alone. Section 7.1.1 discusses ongoing work to apply PipeCheck to the verification of

such scenarios [LSMB15].

1.5 Thesis Contributions

This thesis makes an impact via the following significant contributions:

• Inspired by the shortcomings of existing informal memory consistency model

specification techniques, this thesis defines the Memory Ordering Specification

Table (MOST), a precise, self-contained notation for defining components of a

memory consistency model [LTPM15a]. MOSTs improve upon existing spec-

ification formats by directly including features (e.g., fence cumulativity and

degree of store atomicity) that are left unaddressed by simpler models. The key

contribution of MOSTs is that they eliminate much of the imprecision found in
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typical industry definitions of memory consistency model behaviors and hence

also of the analyses that make use of such definitions.

• To demonstrate the practical value of MOSTs, this thesis also presents the

open-source ArMOR framework for systematically analyzing and manipulating

MOSTs [Lus15]. The precision and completeness of MOSTs allows them to be

analyzed to improve the rigor of use cases which already exist (e.g., compilers)

and in use cases which are forward-looking (e.g., cross-ISA dynamic binary

translation). This thesis performs an in-depth analysis of the latter, showing

not only that the necessary analysis can be automated using ArMOR, but also

that such translation can be made practical in a variety of hardware and software

scenarios.

• The work in this thesis is the first to present a general-purpose formal axiomatic

memory model framework for specifying and verifying microarchitectural mem-

ory access reordering behavior [LPM14, LPM15]. While previous work had

shown the need for rigor and formalism when analyzing memory consistency

models at the architecture or software level, no previous work had applied

such techniques to the microarchitecture space. PipeCheck’s microarchitectural

happens-before (µhb) graphs and the domain-specific language (DSL) that de-

fines how they are enumerated provide a clear, visualizable approach for speci-

fying and verifying implementation-level memory reordering optimizations.

1.6 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 presents a background of

history and current practice of memory consistency models. Chapter 3 introduces the

MOST specification format and the ArMOR framework for systematically manipu-

lating MOSTs. Chapter 4 then presents an in-depth case study of the use of MOSTs
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to perform flexible and practical cross-ISA dynamic binary translation. Chapter 5

introduces PipeCheck, a methodology and automated tool for defining and analyz-

ing microarchitecture-level consistency models, while focusing on the behavior of the

pipeline itself. Chapter 6 then develops a microarchitecture-level model for verifying

the consistency implications of cache coherence protocols. Finally, Chapter 7 presents

ongoing and future research directions and then concludes this thesis.
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Chapter 2

Background and Related Work

This chapter presents an overview of past and ongoing research in the field of memory

consistency models. This overview serves as the foundation for the rest of this thesis.

Section 2.1 presents high-level background on memory consistency models in general,

and Section 2.2 describes the approaches most often used to define weak memory

models. Section 2.3 explains how empirical methods are used to complement formal

analyses in practical usage scenarios. Section 2.4 discusses some challenges faced when

trying to compare or map between different memory models. Section 2.5 describes

some simplifying assumptions that we make in this thesis, in keeping with other

related work on memory consistency models. Section 2.6 then concludes.

2.1 Basic Overview

A memory consistency model is defined by Adve and Gharachorloo as follows [AG96]:

[A] memory consistency model [. . .] provides a formal specification of how

the memory system will appear to the programmer, eliminating the gap

between the behavior expected by the programmer and the actual be-

havior supported by a system. Effectively, the consistency model places
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restrictions on the values that can be returned by a read in a shared-

memory program execution.

The most intuitive way to define a memory model is to state that each load is required

to return the value of the latest store to the same address. This works in single-

threaded code, because “latest” can be defined as the most recent such store in

program order : the order in which the instructions were originally laid out in the

code being executed. In multithreaded programs, however, accesses from other cores

may be interleaved with the accesses of the core in question. This means that there

will in general be many values that any given load might plausibly return. The goal

of a memory model is therefore to specify which values are legal to return and which

are not.

A naive approach to defining the multithreaded sense of “latest load” is to choose

the store (originating from any core in the system) that has happened most recently in

an absolute physical sense. This is sometimes known as strict consistency. However,

global synchronization or coordination among a distributed set of cores is difficult

or even impossible to implement in practice, as any inter-core communication or

synchronization requires passing of messages which themselves take non-trivial (and

often unpredictable) amounts of time to propagate. Strict consistency is therefore

considered infeasible to implement in practice. In practical models, “latest” must

therefore be defined in such a way that it does not refer to any notion of a global

physical timeline.

2.1.1 From Sequential Consistency to Weak Ordering

The first memory consistency model, sequential consistency (SC), was defined in 1979

by Lamport [Lam79]. SC was originally defined in terms of two properties:

1. The result of any execution is the same as if the operations of all the threads

were executed in some sequential order.
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2. The operations of each individual thread appear in this sequence in the order

specified by the thread.

The key benefit of SC is that it closely matches programmers’ intuitions about how

multithreaded programs should behave. Under SC, for each load, the set of values

that can be returned consists of exactly one element: the most recent store to the

same address, according to the interleaving implied by rule 1.

In spite of its intuitiveness, Lamport noted in his paper that enforcing sequential

consistency “may not be worth the price of slowing down the processors” [Lam79].

In fact, nearly all modern systems intentionally sacrifice the elegance of SC to deliver

higher performance. Memory accesses may be reordered from how they originally

appear in the code into an order that improves latency and/or throughput, thereby

violating rule 2 of SC. Furthermore, accesses may be buffered in ways that make them

visible to certain threads before they become visible to other threads. This causes

different threads to potentially observe the same set of events occurring in different

orders, thereby violating rule 1 of SC.

Weak memory models legalize the reordering of memory accesses, buffering of

memory acceses, and lack of global consensus. Weak models have been defined in

various ways over the years. Dubois et al. first defined them as follows [DSB86]:

In a multiprocessor system, storage accesses are weakly ordered if 1) ac-

cesses to global synchronizing variables are strongly ordered and if 2) no

access to a synchronizing variable is issued in a processor before all previ-

ous global data accesses have been performed and if 3) no access to global

data is issued by a processor before a previous access to a synchronizing

variable has been performed.

Here, synchronizing variables are variables which are explicitly declared as such by

the programmer. Strong ordering is a concept that has been found to be too weak;

17



most modern definitions replace “strongly ordered” in the above definition with “se-

quentially consistent”. Finally, “perform” is defined by the authors as follows:

A LOAD by processor I is considered performed with respect to processor

K at a point in time when the issuing of a STORE to the same address

by processor K cannot affect the value returned to processor I. A STORE

by processor I is considered performed with respect to processor K, at a

point in time when an issued LOAD to the same address by processor

K returns the value defined by the STORE. An access by processor I is

performed [(or globally performed)] when it is performed with respect to

all processors.

Some memory models use the same definition of “perform” to this day [IBM13].

However, it has proven difficult to formalize, as the loads and stores to which the

definition refers are hypothetical: they may not (and in general do not) actually

exist, thereby making it hard for formal analyses even to refer to them. Chapter 5

addresses this problem and presents a microarchitecturally-inspired solution.

In response to the above shortcomings in the Dubois et al. definition, Adve and

Hill proposed an alternative definition of weak ordering that by design focused on

outcomes rather than mechanisms [AH90]:

Hardware is weakly ordered with respect to a synchronization model if

and only if it appears sequentially consistent to all software that obey[s]

the synchronization model.

To go along with this definition, they also propose the now widely-used data-race-

free (DRF) family of synchronization models. DRF rules state that all conflicting

accessses (i.e., accesses from different cores to the same address and for which at

least one is not a read) must be ordered by a happens-before relationship induced by

explicit synchronization operations on the cores in question.
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In modern informal usage, any memory model which violates either of the two

rules of SC may be considered “weak” or “relaxed”. The Adve and Hill definition of

weak ordering focuses on the ability of a processor to restore sequential consistency,

and most modern architectures do satisfy this requirement. However, modern usage

frequently diverges from the Adve and Hill definition in two key ways. First, their defi-

nition technically requires synchronization operations to access memory, while modern

hardware more commonly performs synchronization using fences or other mechanisms

which do not themsleves access memory. Second, and more fundamentally, a large

body of modern research in memory models explicitly focuses on behaviors which are

not sequentially consistent as the explicit area of interest, even though these behav-

iors are explicitly forbidden under the Adve and Hill definition [Adv93]. Essentially

all modern hardware uses a model weaker than SC, and many performance-critical

data structures are carefully and explicitly optimized to take advantage of the perfor-

mance benefits of non-SC behavior [BMO+12, LGCP13, LPCZN13, MRP+14]. This

thesis primarily falls within this context of properly specifying and verifying behaviors

which are desirable even though they are not sequentially consistent.

Even from the beginning, Lamport cautioned that when designing synchronization

protocols “at the lowest level of the machine code” (i.e., on non-SC machines), “ver-

ifying their correctness becomes a monumental task” [Lam79]. Today, weak memory

models are often considered highly counterintuitive and difficult to work with, and

software models often make it a goal to hide such behavior from the user when it does

exist [BA08, MPA05]. Nevertheless, since non-SC behavior is in widespread use at

both the hardware and the software levels, a proper understanding of weaker-than-SC

memory models is crucial to the correctness of modern systems.
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Layer Notable Modern Examples

Software C++ [BA08], Java [MPA05]

Intermediate
Representation

HSAIL [HSA13], LLVM IR [LA04],
NVIDIA PTX Virtual ISA [NVI13b]

Architecture
SC [Lam79], x86-TSO [OSS09a],

IBM Power [AMT14, MHMS+12, IBM13, SSA+11]

Microarchitecture (this thesis)

Figure 2.1: A stack of memory models. Each builds on top of the layers below it.

2.1.2 A Stack of Memory Consistency Models

Just as in many other computing disciplines, memory models are generally built in

multiple layers. Hardware-level memory models provide a layer of abstraction across

different microarchitectural implementations. Software-level memory models then

provide a layer of portability across different hardware models. Other layers (e.g.,

compiler intermediate representations) may be used as well. Figure 2.1 provides

some examples relevant to systems in use today. Each layer must be implemented in

terms of the layer below it in the stack. Note that much of this complexity is often

hidden inside compilers, libraries, or other similar tools.

Prior to this thesis, most research into formally specifying and analyzing memory

models took place at the architecture level and above. This left a large gap between

the high-level architecture specification and the implementation level, and verifica-

tion within this gap could not be easily performed. As such, this thesis focuses on

specifying and analyzing architecture- and microarchitecture-level memory models in

an effort to bridge this gap.

2.1.3 Coherence vs. Consistency

Cache coherence is a property that is distinct from yet closely related to and often

confused with memory consistency. In this section, we summarize the competing def-
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initions of coherence used by various authors, identify how they relate to consistency,

and then state the terminology we will use in the rest of this thesis.

Coherence is defined in many varying ways by different authors; no single defi-

nition can be considered universal. One common definition is the property that the

accesses to each individual address are sequentially consistent [CLS03]. Many authors

use the narrower property that there exists a globally-agreed-upon total ordering on

the visibility of stores (but not loads) performed to each address [Alg12, SSA+11].

This particular ordering is called write serialization (ws). Cache coherence pro-

tocols often define coherence in terms of a pair of properties: the Single Writer/

Multiple Reader (SWMR) property says that there may be zero or more read-only

copies or exactly one read-write copy (but not both), and the Get Latest Value

(GLV) property states that reads to each address return the value of the latest

write to that address [SHW11]. Other authors use still other subtly distinct defi-

nitions [HP11, MHMS+12, MHW03, SSA+11]. To avoid confusion arising from com-

peting definitions of coherence, the term “coherence” is not used in this thesis without

any other context. Instead, preference is given to more precisely-defined properties

such as write serialization, SWMR, and so on.

Perhaps surprisingly, the role of coherence in memory consistency model specifi-

cations is still partially unsettled. Nearly all consistency models for multicore CPUs

and heterogeneous SoCs (e.g., those with CPUs and GPUs) explicitly require coher-

ence [AMT14, HSA13, MHMS+12, NVI13b, OSS09a, SSA+11]. In software models,

however, the role of coherence is less clear. C++11 did not originally address coher-

ence explicitly [BA08]. However, this omission was later found (during a subsequent

academic formalization process) to make the specification unsound [Bat04, BOS+11].

C++ now requires coherence in the form of four axioms relating the “happens-before”

ordering to the “modification order” [ISO11a]. The current Java memory model does

not mention coherence. At the same time, it has not yet been formally analyzed to
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the same degree as the C++11 model has, and so it is possible that future revisions

may need to include it as well.

Many architects consider coherence and consistency to be entirely decoupled con-

cepts [Mar05]. According to this point of view, the job of the cache coherence pro-

tocol is simply to enforce orderings between accesses to the same address (i.e., co-

herence, for some definition of coherence) by correctly responding to requests and/or

by stalling requests when necessary. The job of the consistency model is then to en-

force orderings between accesses to different addresses. The key benefit of decoupling

coherence and consistency is that verification of each part independently becomes

dramatically easier. This is reflected in the literature: there are numerous papers

on verifying coherence protocols [McM01, SSH+13, SKA13, ZLS10, ZBES14] or on

verifying consistency while assuming a working coherence protocol [Alg12, AMT14,

OSS09a, SSA+11], but there are far fewer on verifying coherence and consistency to-

gether [GSSVD00, TDF+02]. However, many consistency model implementations are

tightly interwoven with the coherence protocol implementation to enable performance

optimizations such as speculative load reordering [GGH91]. At this level, coherence

and consistency inherently cannot always be decoupled, and as Chapter 6 shows,

the details of individual coherence protocols can play an important role in enforcing

coherence.

The question of how coherence relates to consistency comes up repeatedly in this

thesis. Chapter 3 introduces a notation for precisely specifying the orderings that

are or are not included in “coherence” for a variety of architectures. Chapter 5 uses

an idealized model of memory which enforces only write serialization, but Chapter 6

dives deeper and carefully explores how consistency model implementations depend

on write serialization, SWMR, and many other varying properties which may or may

not be enforced by any given coherence protocol.
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Thread 0 Thread 1

st [x]←1 ld [y]→r1

st [y]←1 ld [x]→r2

Proposed Outcome:
1:r1=1, 1:r2=0

(a) Architecture-independent version

Thread 0 Thread 1

MOV [EAX], $1 MOV ECX, [EBX]

MOV [EBX], $1 MOV EDX, [EAX]

Proposed Outcome:
1:ECX=1, 1:EDX=0

(b) x86-specific version

Figure 2.2: Litmus test mp.

2.1.4 Litmus Tests

Litmus tests are very small programs used to test and/or reason about the behavior

of a memory consistency model. Figure 2.2 gives one example. A typical litmus test

contains a small number of threads (generally 2-4) each executing a small number

of instructions (generally 1-6). The instructions in a litmus test generally consist of

explicit loads, stores, fences, or atomic read-modify-write operations. Non-memory

instructions are generally omitted, except where relevant to, e.g., establish the pres-

ence of an address, control, or data dependency. The initial state of memory is, by

convention, that all addresses start holding the value zero unless otherwise explicitly

stated. Litmus tests also specify a particular outcome of interest. This outcome spec-

ifies the values returned by loads and/or the final value stored at a particular address.

If the test is associated with a particular memory model, the test may also specify

whether the proposed outcome is permitted or forbidden by the rules of that model.

Such an annotation would serve as a reference during testing.

The instructions in a litmus test are often presented in a way that makes them

independent of any particular architecture. In particular, litmus tests often abstract

away details of instruction sets, use notation loosely, and so on. This allows the litmus

test to focus on the memory model itself, as opposed to the irrelevant details of any

one instruction set. It also in many cases allows for one test to be analyzed across a

variety of memory models.
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Litmus tests are used in various ways. First of all, litmus tests are used as a means

of allowing humans and computers to reason about a particular behavior of interest.

Second, they can provide a concrete complement to definitions which are otherwise

incomplete and/or highly abstract. I will use litmus tests in both ways throughout

this chapter and the rest of this thesis.

2.2 Defining Weak Memory Models

Driven by the need for higher-performance alternatives to SC, much modern research

and development into memory consistency focuses on the specification and imple-

mentation of weak memory models. Unfortunately, as Lamport so presciently pre-

dicted, reasoning about weak memory models (i.e., determining which values may

be legally returned by memory loads) is made significantly more difficult by the re-

ordering, buffering, and lack of global consensus described earlier. Here, I provide

some background on why these weakly-ordered implementations do not lend them-

selves to simple descriptions or specifications. Chapter 3 then introduces ways in

which memory models can be described while taking these important subtleties into

account, and Chapters 5 and 6 then describe how to rigorously analyze this buffering

and reordering at the microarchitecture level.

2.2.1 Motivating Example

The most prominent property of weak memory models is that, in contrast to rule 2 of

sequential consistency, they allow certain program order relationships to be relaxed.

The specification of which program order relationships must be globally maintained

is called preserved program order (PPO). In other words, if (a) comes before (b) in

program order, and a→b must be preserved, then (a) must happen before (b) from
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Loads Stores
Loads X X
Stores — (mfence) X

Legend:

X Ordering preserved
— Ordering not preserved

(mfence) Ordering preserved by mfence

Figure 2.3: One common (yet incomplete) definition of the total store ordering (TSO)
memory model

Thread 0 Thread 1

(i1) St [x]←1 (i4) St [y]←1

(i2) Ld [x]→r1 (i5) Ld [y]→r3

(i3) Ld [y]→r2 (i6) Ld [x]→r4

Proposed Outcome:
0:r1=1, 0:r2=0, 1:r3=1, 1:r4=0

(i1)

(i2)

(i3)

(i4)

(i5)

(i6)

Figure 2.4: Litmus test iwp2.4 demonstrates that proper memory models to be able
to both capture and reason about very subtle behaviors

the point of view of every observer in the system. Otherwise, if a→b need not be

preserved, some cores may see the effect of (b) before they see the effect of (a).

Preserved program order is often loosely specified using tables such as the one

in Figure 2.3. Every cell such a table indicates whether the corresponding types of

accesses in program order must be preserved. In this example, Total Store Order-

ing (TSO) allows for store→load reordering, but it forbids other types of reorder-

ings [OSS09a, SPA94b]. The inspiration for TSO is that it allows for the insertion

of store buffers between the core and the memory. These store buffers allow loads

to bypass earlier stores, thereby improving overall latency. Preserved program or-

der exists across a wide spectrum. Under sequential consistency, all program order

relationships must be preserved. Under models such as those used by ARM and

Power, few orderings must be preserved, but describing the orderings can be very

difficult [AMT14].

Consider litmus test iwp2.4 in Figure 2.4. This particular test is designed to

highlight how store buffering introduces behavior that is non-trivial to characterize
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and therefore requires non-trivial memory model specification approaches. The focus

on store buffering can be seen from the choices of instructions in the threads of the

test: because (i1) and (i2) are a write followed by a read to the same address, it is

likely (but not strictly required) that (i2) will forward its data from (i1) while (i1) is

still in the store buffer. Similarly, (i5) will likely forward from (i4).

Naive happens-before analysis would proceed as follows. Since (i1) is before (i2)

in program order and (i2) reads from the value written by (i1), (i1) must happen

before (i2). Likewise, (i4) must happen before (i5). If (i4) were to happen before (i3),

then (i3) would be forced to return the value 1, contradicting the proposed outcome.

Therefore, (i3) must happen before (i4). For similar reasons, (i6) must happen before

(i1).

The iwp2.4 litmus test outcome is not legal under sequential consistency, as there

is no single ordering in which 1) program order is respected, and 2) all of the above

ordering relationships hold. This is depicted by the cycle shown in Figure 2.4. How-

ever, in spite of the cycle, and in spite of what Figure 2.3 might imply, the outcome

proposed in Figure 2.4 is permitted under Total Store Ordering (TSO). If (i2) and

(i5) store buffer forward from (i1) and (i4), respectively, then the edges from (i1) to

(i2) and from (i5) to (i6) are effectively “weaker” than the others (in a formal sense),

and the cycle loses its effect. Therefore, this type of weakening must be taken into

account by the analysis mechanism for TSO (and likewise for other models).

Since naive specification approaches are insufficient, a number of different ap-

proaches have been developed in the academic literature and put into use in practice.

The next section describes some of these more advanced techniques, and we return

to litmus test iwp2.4 in Section 5.3.3.
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All Models

Informal Models
[AMD13, ARM13, IBM13, Int13a]

Formal Models

Operational Models
[OSS09a, SSA+11]

Axiomatic Models

Single-Event
Axiomatic Models

[AMT14]

Multi-Event
Axiomatic Models

[MHMS+12],
PipeCheck (Chs. 5-6)1

Figure 2.5: A taxonomy of common approaches used to define hardware memory
consistency models

2.2.2 Operational vs. Axiomatic Models

Given that overly-simplistic definition approaches are insufficient to capture the be-

havior of real-world processors, a variety of more sophisticated approaches are used

in practice. Figure 2.5 presents a taxonomy of approaches that are commonly used

to define hardware memory consistency models. These approaches apply varying de-

grees of formality. Many models, from industry in particular, are described informally

using natural language descriptions, specific examples, and/or explicitly enumerated

rules. More recently, there has been a surge of interest in defining memory models

using more formal mathematical notation which is amenable to being analyzed using

rigorous theoretical techniques. Informal models often provide more intuitive descrip-

tions, but they also by their nature tend to be imprecise and/or incomplete. Formal

models are very precise, but they are often considered obscure and difficult to use by

non-experts.

1MOSTs and ArMOR do not form a memory model per se, as they cannot directly determine
whether a proposed litmus test outcome is legal. However, they can be used to define components
within models of the above types. As I tend to think in terms of multi-event axiomatic models, I
tend to visualize MOSTs as being used in this way as well.
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Formal hardware memory models can be classified into two main categories2.

Operational models describe legal executions in terms of a series of steps taken by

some hypothetical abstract machine. Each step represents a transition from one

well-defined state to another according to some well-defined transition function. Op-

erational models are often relatively intuitive, but they can suffer from a state space

explosion that makes them less useful within practical tools [AMT14].

Axiomatic memory models define correct executions in terms of logical predicates

that must be satisfied. One prominent type of predicate is the notion that a happens-

before graph, or some subset thereof, be acyclic. A happens-before graph is a graph

in which nodes represent instructions and/or events in some abstract machine and in

which edges represent some formal notion that the source node happens prior to the

destination node. A cycle of happens-before edges (i.e., an indication that an event

happens before itself) is (in most cases) considered to be a proof by contradiction

that the proposed scenario is impossible.

Axiomatic memory models based on happens-before graphs can be further subdi-

vided into two categories [AMT14]. In single-event axiomatic models, each instruction

in a program corresponds to one node in a happens-before graph. As Section 2.2.1

demonstrated, these models cannot naively check for cycles. They instead generally

define legal executions as those for which certain carefully-defined subsets of the graph

are acyclic and/or irreflexive. In multi-event axiomatic models, each instruction cor-

responds to multiple nodes in a happens-before graph. Multi-event axiomatic graphs

are larger, but the analysis is often simpler than for single-event axiomatic models.

Most often, any cycle in a multi-event axiomatic happens-before graph is enough to

rule out an execution.

2Denotational models, which associate each state or program with a formal mathematical coun-
terpart, form a third category. They are commonly used to define programming language semantics,
but they are seldom used to define hardware memory models.
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Neither axiomatic nor operational models have proven to be objectively superior,

and both approaches are still in use today. However, the lack of a single standard

approach often makes it difficult in general to compare any two models written using

two different frameworks and languages. This in turn can make it difficult determine

whether models are equivalent (e.g., the models of Figure 2.6 below), whether one

model is stronger or weaker than another (Section 3.2), or how to map operations from

one model to another [BMO+12, LGCP13, LPCZN13]. Even models which follow

the same approach are often incompatible due to differences in the languages and

formalisms used to specify them. Alglave et al. recently proposed the herd framework

which defines a general-purpose langauge cats for defining single-copy atomic memory

models; however, this only captures the subset of models which follow that approach.

In response, Chapter 5 will define a general-purpose language for defining multi-event

axiomatic memory models at the architecture and the microarchitecture levels.

In spite of the different approaches and languages used to define different memory

models, researchers have had some success in manually proving equivalence between

models [AMT14, MHMS+12, OSS09a]. This equivalence, once established, allows

users and researchers to choose whichever form they prefer. Supposed proofs of

equivalence have also at times been shown to be incorrect, and models thought to

be equivalent have turned out to actually differ in subtle ways [AMT14, LPCZN13].

Nevertheless, the ability to prove equivalence between approaches remains a powerful

mechanism for explaining and analyzing a wide variety of use cases for a wide variety

of audiences.

2.2.3 Defining Models Which Reflect Actual Hardware

Ideally, a memory model would exactly match the behavior of real hardware imple-

mentations of that model: any behaviors observable on hardware would be considered

legal by the model. In practice, hardware implementations may at times never pro-
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duce behaviors which are permitted by the specification, and hardware may also per-

mit behaviors which are forbidden by the specification. The latter is clearly erroneous,

but the causes for this situation vary: there may be bug(s) in the model, in the hard-

ware, or in both. Some hardware designs have been shown to incorrectly implement

certain requirements of their architecture-level models [ABD+15, ARM11, Int15]. Re-

searchers and designers also have proposed models which incorrectly forbade behavior

that turned out to be observable on real hardware [AMT14]. Many memory model

designs and implementations therefore end up following a pattern of repeated itera-

tion and refinement, fixing discovered bugs at each step, with the goal of converging

towards a properly-sound outcome.

The reasons for implementing stricter-than-necessary ordering enforcement can

be subtle. Often, it may even be intentional. For example, a company may want to

implement a simpler core design which is nevertheless fully software-compatible with

more complex, higher-performance designs. Another reason is that a memory model

may be specified in a way that allows for future optimizations that are not yet imple-

mented in any hardware, as with load buffering on the Power architecture [SSA+11].

In cases like these, outcomes forbidden by the model must remain unobservable in

hardware, but certain outcomes that are permitted by the model may never be ob-

served on actual hardware.

As an example of the kinds of discrepancies that can arise, Figure 2.6 shows two

litmus tests being analyzed using various formal and informal models of the Power

architecture. The first test, mp+lwsync+addr-po-detour, is permitted by two for-

malizations but forbidden by a third, and it is unclear whether the industry docu-

mentation forbids or permits it. The second test, mp+lwsync+addr-bigdetour-addr,

is similar, except that is forbidden by two of the three models. These two tests clearly

demonstrate that the three formal models disagree, and that there is not yet a con-
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Thread 0 Thread 1 Thread 2

stw [x], 2 lwz r1, [y] stw [x], 1

lwsync xor r5, r1, r1

stw [y], 1 lwz r2, [z+r5]

lwz r3, [x]

lwz r4, [x]

Proposed Outcome:
[x]=1, 1:r1=1, 1:r2=0, 1:r3=0, 1:r4=1

(a) Litmus test mp+lwsync+addr-po-detour. The naming convention is as follows: “mp”
refers to the high-level pattern being tested (see Figure 2.2). lwsync refers to the synchro-
nization used in thread 0. addr-po-detour refers to the synchronization used in thread 1:
an address dependency, followed by a program order relationship, followed by a detour rela-
tionship. The latter appears to be a typo; detour is described as (po ∩ (coe; rfe)), while
(po ∩ (fre; rfe)), which is used in this test, is labeled rdw, for “read different writes”. To
avoid confusion, I maintain the original name.

Thread 0 Thread 1 Thread 2

stw [x], 1 lwz r1, [y] stw [z], 2

lwsync xor r5, r1, r1 lwsync

stw [y], 1 lwz r2, [z+r5] stw [w], 1

lwz r3, [w]

xor r6, r3, r3

lwz r4, [x+r6]

Proposed Outcome:
1:r1=1, 1:r2=0, 1:r3=1, 1:r4=0

(b) Litmus test mp+lwsync+addr-bigdetour-addr, where bigdetour refers to detour/rdw
with extra synchronization added in thread 2.

Model Style
mp+lwsync+addr- mp+lwsync+addr-

-po-detour bigdetour-addr

[IBM13] Informal (unclear) (unclear)
[SSA+11] Operational Forbidden Forbidden

[MHMS+12] Multi-Event Axiomatic Permitted Forbidden
[AMT14] Single-Event Axiomatic Permitted Permitted

— Real Hardware Observed Not Observed

(c) Disagreement of various models with hardware and with each other

Figure 2.6: The Power memory model still has some unresolved corner cases; there is
not yet a consensus on the correct behavior for programs such as the two litmus tests
shown here [AMT14].
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sensus on the “officially correct” behavior in these corner cases, highlighting that

increased formalism does not in itself solve the problem of completeness.

The discussion above motivates two key features in this thesis. First, it motivates

the need to be able to rigorously compare an architectural memory model specifica-

tion and a microarchitectural implementation of that specification. This comparison

must also allow for the case in which an outcome is permitted by the architecture but

not observable on a given microarchitecture. Second, it motivates the need for speci-

fication formats which are flexible and which can easily be adjusted when necessary.

Both points are addressed throughout the rest of this thesis.

2.2.4 Other Subtle Ordering Relationships

This section describes various other properties related to orderings between instruc-

tions. All four are closely related and interdependent yet subtly different; memory

models vary widely in whether (and how) they do or do not enforce these properties.

As such, it is important that memory model analysis techniques (including those

proposed in this thesis) be able to distinguish between them and reason about them.

Store Atomicity. Atomicity is heavily overloaded word. Its usage in the context

of memory consistency models refers to the manner in which stores perform with

respect to different cores in the system. A store is single-copy atomic if it performs

with respect to every core in the system (including the issuing core) at a single point

in time [Col92]. A store is multi-copy atomic if it performs with respect to every core

other than the issuing core at a single point in time. Multi-copy atomic stores may

perform with respect to the issuing core early. Non-multi-copy-atomic stores may

perform with respect to cores in any order without restriction, although in general

they still perform with respect to the issuing core first.

Store atomicity is beneficial because it ensures that transitivity and causality

(discussed below) are automatically enforced, meaning that there is no need to deal
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with the idiosyncrasies of cumulativity (also discussed below). It is the lack of multi-

copy atomicity that allows many of the most counterintuitive behaviors to become

visible. On the other hand, store atomicity allows fewer forms of buffering than does

non-atomicity, and so performance may be degraded as compared to the optimum.

Both choices are in widespread use; TSO is multi-copy atomic, but ARM and Power

are not, for example.

Transitivity and Causality. Transitivity is the property that, for some events

A, B, and C, if A happens before B and B happens before C, then A happens before

C as well. Causality is the property that, for some events A and B, if A causes B to

happen (or to happen in a certain way), then A should happen before B. Violations of

causality and/or transitivity are generally considered highly counterintuitive to most

programmers. Nevertheless, both can occur on some weakly-ordered architectures.

As an example of both properties, Figure 2.7 demonstrates how both transitivity

and causality can be violated in practice. This example assumes that stores are not

multi-copy atomic but that loads perform with respect to all cores in a single step.

Because the proposed outcome of Figure 2.7a states that (i2) returns the value 1, (i2)

must perform after (i1) has performed with respect to thread 1. Likewise, (i4) must

perform after (i3) has performed with respect to thread 2. Due to the dependencies3,

(i3) may only perform after (i2) has performed, and (i5) may perform only after (i4)

has performed.

By the above reasoning, since (i1) must happen before (i2) and (i2) must hap-

pen before (i3), it would appear that due to transitivity, (i1) must happen before

(i3). Likewise, by causality, since (i1) created the value that (i3) wrote to memory, it

would again appear that (i1) must happen before (i3). Unfortunately, neither intu-

ition is guaranteed to hold true on weakly-ordered architectures such as Power and

ARM. Figure 2.7b describes one execution which produces the outcome proposed in

3ARM and Power maintain the dependency ordering even though r1 xor r1 is always zero.
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Thread 0 Thread 1 Thread 2

(i1) stw [x], 1 (i2) lwz r1, [x] (i4) lwz r1, [y]

xor r2, r1, r1 xor r2, r1, r1

(i3) stw [y+r2], r1 (i5) lwz r3, [x+r2]

Proposed Outcome:
1:r1=1, 2:r1=1, 2:r2=0

(a) Litmus test code

Thread 0 Thread 1 Thread 2

(i1) perf. wrt. thread 0
(i1) perf. wrt. thread 1

(i2) perf. globally
(i3) perf. wrt. thread 1
(i3) perf. wrt. thread 2

(i4) perf. globally
(i5) perf. globally

(i3) perf. wrt. thread 0
(i1) perf. wrt. thread 2

(b) Timeline of one execution producing the proposed outcome

Figure 2.7: Litmus test wrc+addrs. The proposed outcome is permitted on Power,
even though it violates causality and transitivity.

Figure 2.7a while satisfying all of the above constraints. The key distinction is that

reasoning performed from the point of view of one core or thread need not hold true

from the point of view of other threads. In particular, although (i1) must have per-

formed with respect to thread 1 before (i2) performs, it does not have to perform with

respect to thread 2 before (i2) performs. This breaks both transitivity and causality.

Figure 2.8 demonstrates how axiomatic models capture the lack of transitivity

and causality for architectures such as Power. Figure 2.8a presents Power litmus test

blw-w-006. This test highlights the fact that in the Power model, edges due to lwsync

fences cannot be transitively composed with edges due to coherence orderings in order

to form cycles that rule out an execution. In the single-event axiomatic approach of

Figure 2.8b, the lack of transitivity is represented by searching for cycles (or reflexive
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Thread 0 Thread 1 Thread 2

(i1) stw [x], 1 (i3) stw [y], 2 (i5) lwz [z], r1

lwsync lwsync xor r2, r1, r1

(i2) stw [y], 1 (i4) stw [z], 1 (i6) lwz [x+r2], r3

Proposed Outcome:
2:r1=1, 2:r3=0

(a) Power litmus test blw-w-006 [SSA+11]

(i1)

(i2)

(i3)

(i4)

(i5)

(i6)

uniproc uniproc

uniproc

(i1)

(i2)

(i3)

(i4)

(i5)

(i6)

hb hb hb hb

acyclic(po-loc ∪ rf ∪ co ∪ fr) acyclic(hb)

(i1)

(i2)

(i3)

(i4)

(i5)

(i6)

fre

prop ∩ hb prop ∩ hb hb hb

(i1)

(i2)

(i3)

(i4)

(i5)

(i6)

prop co prop

irreflexive(fre;prop;hb∗) acyclic(co ∪ prop)

(b) Single-event models [AMT14] check a number of subgraphs for acyclicity or
irreflexivity. Although the union of the graphs would be cyclic, each individual
relevant subgraph is acyclic/irreflexive.

acyclic(evord)

acyclic(cord)

acyclic(uniprocthread0)

(c) Multi-event models [MHMS+12] generally check a small number of graphs for
cyclicity. The graphs themselves are bigger and more complicated, but the analysis
(i.e., cycle checking) is simpler.

Figure 2.8: Comparing single-event and multi-event axiomatic models
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Thread 0 Thread 1 Thread 2

(i) st [x]←1 (ii) ld [x]→r1 (v) ld [y]→r2

(iii) sync (vi) st [y]←3

(iv) st [y]←2

Outcome r1=1, r2=2:

Group A of (iii) = {(i),(ii)}
Group B of (iii) = {(iv),(v),(vi)}

Figure 2.9: Since Power’s sync is A- and B-cumulative, it includes accesses from
other threads into its scope. Most [ARM13, IBM13, SSA+11] but not all [AMSS10]
formalizations consider (vi) to be in group B.

relations) in particular subsets of the graph rather than within the graph as a whole.

In the multi-event axiomatic approach of Figure 2.8c, five separate graphs (three of

which are pictured) are simply checked for cycles; no subsets need to be taken.

Cumulativity. Power and ARM hardware enforce transitivity and causality only

when cumulative fences are inserted. Cumulativity is a recursively defined property.

The base case is that instructions program-order-before a given fence are members

of “group A”, and instructions program-order-after a fence are members of “group

B”. With A-cumulativity, instructions from any thread which happen before a mem-

ber of group A are themselves included in group A, recursively. Likewise, with B-

cumulativity, instructions from any thread which happen after a load from that thread

returns a value written by a store in group B are themselves members of group B,

recursively. A cumulative fence is defined to enforce ordering between each member

of group A and each member of group B matching the specification of the fence type4.

Figure 2.9 demonstrates the cumulativity of the Power sync fence (iii). In the

base case, group A consists of (ii) and group B consists of (iv). Then, since (ii) reads

from (i), (i) happens before (ii), and so since the sync is A-cumulative, (i) is included

into group A of the sync instruction. Similarly, (v) reads from (iv), and (vi) happens

after (v), so (v) and (vi) are included in group B of the sync by B-cumulativity.

4e.g., the Power lwsync fence is cumulative but does not enforce ordering between stores in group
A and loads in group B.
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Cumulativity provides a compromise between the performance benefits of allow-

ing transitivity and causality violations, while allowing for the ability to restore both

properties where necessary. Unfortunately, because cumulativity is inherently a dy-

namic relationship, it can be hard to reason about the orderings it implies, and many

models of ARM and Power require groups A and B to be calculated using some

explicit form of iteration until convergence. Likewise, as “happens before” can be

understood in many ways, the use of “happens before” within the definition of cu-

mulativity has been formalized in many competing ways [Alg12, AMT14, ARM13,

IBM13, MHMS+12, SSA+11].

2.3 Empirical Analysis of Memory Models

Memory models can be evaluated in a number of ways. First and foremost is correct-

ness: implementations (software, microarchitecture, or otherwise) should always meet

whatever correctness specifications are required. Once correctness is established, per-

formance can be measured. Performance is hard to quantify exactly, and it is specific

to an implementation rather than a specification. A third important metric is ease of

use, which is much harder to quantify, but nevertheless very important in practice.

This thesis takes the point of view that correctness should be established before

performance results can be considered meaningful. Very often, microarchitectures

may be able to realize large performance gains directly from even subtle violations of

correctness. In other words, the cost of maintaining 100% correctness may be large as

compared to maintaining even “99% correctness” [BA08, LPCZN13]. If correctness

has not yet been established for a new architectural proposal, then it can be unclear

whether the performance gains are due to a true contribution of the proposal or

simply due to an as-yet-undiscovered bug. A goal of all of the techniques and tools
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developed in this thesis is to make a verification-first approach more practical than

is often feasible with the tools and resources available today.

2.3.1 Correctness

Formal proofs of correctness for any given implementation can be prone to unexpected

bugs or corner cases. The formalism may assume some property which is not in fact

true, meaning that any result derived from the faulty axiom itself becomes faulty. Or,

the implementation may not actually enforce the rules of the specification correctly.

Knuth famously summed up this problem in the following quote: “Beware of bugs in

the above code; I have only proved it correct, not tried it.” [Knu97].

A standard approach for empirically verifying the correctness of an implementa-

tion is testing: executing well-defined test cases with known expected outcomes, and

then seeing if the observed outcome matches the expected outcome. Testing-based

techniques are generally much faster than formal verification, and they can be used

as a sanity check that no assumptions made during formalization are violated in prac-

tice. However, testing techniques generally suffer from a lack of coverage that formal

models can often better provide, as many bugs may be triggered only in extremely

uncommon corner cases. For this reason, formal verification and empirical testing are

generally used to complement each other.

Testing-based techniques have proven valuable for performing empirical correct-

ness checking. Hangal et al. developed TSOTool, a framework for automatically

generating tests for the TSO memory model and then for using the test results to

track down the hardware origin(s) of any bugs [HVML04]. Many others have devel-

oped similar frameworks for other use cases [MHC+06]. Researchers have also pro-

posed architectural structures for dynamically watching for ordering violations [CL02,

CLH+09, CMP08, MS05].
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Testing often does identify bugs in hardware, but like everything else it comes

with tradeoffs. Early (e.g., pre-silicon) testing may be slower and/or incomplete,

while later (e.g., post-silicon) testing may be more comprehensive due to the ability

to test real hardware. However, post-silicon bugs are dramatically more expensive to

correct due to the time and money cost of fabricating a new corrected version. Both

pre- and post-silicon approaches have become standard as the burden of verification

has grown increasingly difficult over time.

2.3.2 Performance

The key motivation for defining and using weak memory models is the performance

benefits they enable. However, it is a slight misnomer to talk about the performance

of a given memory model itself, as a model is just a specification. It is more correct to

talk about the ability of a memory model to allow (or not allow) for high-performance

implementation(s). Furthermore, as with any studies of performance, the choice of

benchmarks can make a big difference in the final scores for each case.

The extent to which the choice of memory model affects the ability to build high-

performance implementations is unclear. Researchers have proposed various hardware

optimizations using techniques such as speculation in order to build microarchitec-

tures for models as strict as SC yet which apparently have low to negligible perfor-

mance overhead as compared to weaker models [BMW09, CTMT07, DMT13, HS13,

SNM+12]. However, industry does not appear to have reached the same conclusions.

In any case, the power, area, and/or verification costs of building such proposals in

real hardware may limit their applicability.

Many features of weak hardware and software memory models exist so that “ex-

pert” programmers can take advantage of them when writing key libraries or data

structures [BA08]. Often, these features are added with particular benchmarks in

mind. One prominent example is the C++11 memory order consume parameter,
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which behaves similarly to an acquire operation except that it only enforces order-

ings for dependent instructions. This feature was added to C++ in large part so

that a Read-Copy-Update (RCU) data structure could be efficiently and portably

implemented within the Linux kernel [MRP+14].

An additional concern is the ability to write high-performance software and com-

pilers that can take full advantage of the available hardware. Lê et al. built, proved

correct, and measured the performance of a work-stealing queue and a FIFO data

structure in C11, ARM, and Power [LGCP13, LPCZN13]. They showed that per-

formance can vary dramatically across memory models, and that sometimes, the

optimal design for one memory model is sub-optimal on others5. This sequence of

papers demonstrates the need for better and more reliable toolchains when putting

memory model analysis techniques into practice.

2.4 Comparing and Mapping Between Models

A key practical challenge for consistency model specification and analysis techniques

is to enable synchronization primitives to be correctly mapped from one model to

another. Although programmers generally work at the top of the stack of models

shown in Figure 2.1, the code must be mapped onto the lower levels of the stack,

generally through one ore more intermediate layers (e.g., compiler intermediate rep-

resentations), before it can be executed by hardware. Unfortunately, as Section 2.2.2

showed, the frameworks used to define different memory models may in general differ

widely in the approach used (operational vs. axiomatic vs. informal) and the lan-

guages used to define them. As a result, it can become very difficult to reason about

how to map consistency model features between models.

5Highlighting the difficulty of endeavors such as these, the analysis was later shown to itself be
slightly buggy [ND13]. Their conclusion remains valid nevertheless.
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memory

order

relaxed

memory

order

release

memory

order

seq cst

x86 mov mov xchg

Power st lwsync; st sync; st

ARMv7 st dmb; st dmb; st

ARMv8 str stl stl

Itanium st.rel st.rel st.rel; mf

Table 2.1: Mapping C11 low-level atomics with different ordering specifications onto
hardware. The software constructs map onto different architectures in different
ways [S+].

As just one example, consider the process of compiling C11 atomic stores onto

different architectures. C11 is a data-race-free language, meaning that all cross-

thread communication must take place via explicit synchronization operations [AH90,

ISO11b]. In C11 terminology, two types of operations are considered synchronization

operations: operations on mutexes, and loads and stores which are annotated as

being “atomic”6. Atomic operations in turn come with a memory order param-

eter indicating the ordering semantics associated with that instruction. Various

types are available, including sequentially consistent semantics, acquire/release se-

mantics [GLL+90], and relaxed semantics, where the latter implies indivisibility but

no inter-instruction ordering requirements. Use of memory order parameters other

than memory order seq cst is described by the designers as being intended for ex-

perts only [BA08]

Table 2.1 shows how three flavors of C11 atomic store orderings map onto dif-

ferent architectures in very different ways [S+]. The memory order release and

memory order seq cst options map onto some combination of normal memory ac-

cess opcodes (e.g., mov), opcodes which combine memory access and synchronization

(stl, st.rel), and normal opcodes plus explicit fences (lwsync; st, dmb; st). No

one type of mapping is universal. The corresponding table for loads is even more

6“Atomic” is a heavily overloaded word; it it used here 1) to indicate an indivisible sequence of
operations, and 2) to annotate memory accesses as being synchronization operations. It does not
imply store atomicity as defined in Section 2.2.4.
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diverse, enforcing orderings through the use of features such as explicit false depen-

dencies. The process of deriving these mappings and proving them correct is generally

shielded from application programmers, but they represent very real complexity for

library and compiler writers.

Unfortunately, the current most reliable method for determining such mappings

requires the construction of complicated formal models and dense mathematical cor-

rectness proofs which may take years to complete [BMO+12, Gha95, PVJ15]. Further-

more, the process of deriving mappings for new primitives can uncover unexpected and

unintended incompatibilities between models. For example, Lê et al. discovered that

a subtle incompatibility between the C11 and the Power memory models led to “un-

recoverable overheads” in the design of work-stealing queues for Power [LPCZN13].

This problem will only continue to get worse as new languages and new paradigms

introduce even more new features which have not yet been throughly formally ana-

lyzed [OCY+15, WBDB15].

Lastly, the goal of mapping primitives from one model to another carries an im-

plicit assumption that doing so is even possible in the first place. Most models can

be made to enforce even sequential consistency given a sufficient amount of synchro-

nization, but there are exceptions. For example, on Itanium, although acquire loads

and release stores can be made to behave in a sequentially consistent manner, un-

ordered loads and stores cannot be made sequentially consistent through any amount

of synchronization [Int10]. Furthermore, it is not clear whether many GPU memory

models can be made to behave in a sequentially consistent manner through any choice

of operations or any amount of synchronization [ABD+15, NVI13b]. Omissions such

as these make it effectively impossible to map certain types of synchronization onto

certain types of hardware.
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2.5 Simplifying Abstractions Made in This Thesis

Many memory model specifications are somewhat abstracted from the details of any

actual instruction set. Issues such as false sharing of cache lines, partially-overlapping

accesses, different cacheability modes, ordering of intra-SIMD instruction accesses,

etc., are often left unspecified by the formalism. Sometimes, memory models may

abstract away hardware details because even the abstracted model may be difficult

enough to build and/or analyze. In this sense, understanding the simplified model

becomes a prerequisite for building an extended version which incorporates the finer

details. Other times, the model may be intentionally abstracted so that the same

model can be applied to different instruction sets. For example, the total store

ordering (TSO) memory model was originally defined for SPARC and hence used

SWAP (atomic swap) and LDSTUB (atomic test and set) as its synchronization prim-

itives [SPA94a]. TSO has since been adapted to x86, which uses mfence and the

LOCK prefix as its primary synchronization primitives. The spirit of both model

instances is the same, but due to the difference in synchronization primitives, the

implementations differ slightly.

Unless otherwise stated, in keeping with the standard approach taken in memory

model research, this thesis makes the following basic assumptions about memory ac-

cess behavior [AMT14, LPM14, MHMS+12, OSS09a, SSA+11]. First, it assumes that

there are some set of basic memory access types: loads, stores, and synchronization

accesses of various kinds (e.g., atomic read-modify-write). It does not distinguish

between different types of stores, stores to different memory types (e.g., write-back

vs. write-through vs. non-cacheable), etc. I also assume the existence of synchro-

nization primitives in the form of fences, dependencies, the x86 LOCK prefix, and so

on. However, the details of, e.g., the instruction sequences giving rise to particular

types of dependencies are not generally elaborated upon in an effort to keep the focus

on the memory model itself. Second, it assumes that values are identically-sized (at
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the granularity at which cores address memory). Lastly, it assumes that accesses are

non-overlapping, meaning that any two accesses either alias entirely (i.e., they are in

fact accessing the same address) or not at all.

2.6 Chapter Summary

This chapter presented the necessary background for understanding the goals and

mechanisms presented in this thesis. The subsequent chapters explore solutions to

many of the problems posed by this chapter; namely, the need for clear and precise

specifications of memory ordering behavior, the need for rigorous and systematic

memory model analysis techniques, and the need to understand how memory models

are implemented at the microarchitecture level.
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Chapter 3

Memory Ordering Specification

Tables and ArMOR

The previous chapter highlighted, among other things, the problem that memory

models are often specified in ways that make it difficult to compare models or to map

primitives from one model to another. This chapter introduces the Memory Ordering

Specification Table (MOST), a architecture-independent format for defining mem-

ory model primitives [LTPM15a, Lus15]. It also introduces the ArMOR framework

for comparing and manipulating MOSTs. The next chapter then uses the ArMOR

framework for an in-depth case study of MCM-aware dynamic binary translation.

3.1 Introduction

Across both academia and industry, a large number of memory models have been

studied in detail, formalized into rigorous definitions, and/or put into practice in

the real world. As Chapter 2 showed, these memory models vary widely in relative

strength, degree of formality, definition approach taken (i.e., operational, axiomatic,

or other), choices of fence types to include, and so on. Furthermore, given that

many of these specifications are vague, obscure, and/or simply incompatible with each

45



other, it can be challenging to check whether a given pair of ordering mechanisms

from different models is equivalent or whether they differ in subtle ways. Such a need

would arise when compiling ordering mechanisms from a given software model onto

a given hardware model, to give just one example.

Due to the complexity of even properly defining memory models such as those

used by C/C++11, Java, ARM, or Power, and due to the one-off manner in which

memory models are often defined, any analysis or toolflow (e.g., any compiler or

any synchronization library) can only be built in a reliably correct manner through

the use of formal analysis [Alg12, BMO+12, BA08, LGCP13, LPCZN13, MHMS+12,

MPA05, SSA+11]. Informal analyses are prone to being either overconstrained or

simply incorrect. Unfortunately, the lack of any common specification language means

that attempts to build formal cross-model analyses can take multiple person-years of

dense formalism to complete.

This chapter presents ARchitecture-independent Memory Ordering Requirements

(ArMOR), a model-independent framework for specifying, reasoning about, and

translating between memory consistency models. ArMOR defines memory ordering

requirements (MORs)—fences, dependencies, or any other ordering enforcement

mechanisms—in a self-contained, complete, and precise format known as a Memory

Ordering Specification Table (MOST). MOSTs resemble widely-used reordering

tables (e.g., for TSO, as in Figure 2.3) that indicate whether load→load, load→store,

store→load, and store→store orderings need to be maintained. However, a key

contribution of MOSTs is that they also directly encode subtle details such as store

multi-copy atomicity, fence cumulativity, and so on. This added precision makes

MOST-based analysis less prone to the types of under- or over-constraints that can

result from relying on less systematic techniques.

We envision MOSTs being used to specify the behaviors of memory models at the

hardware, software, and/or intermediate representation level. While this thesis fo-
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cuses on analyzing hardware models, approaches which are broadly similar to MOSTs

have been considered at the software level as well [PVJ15]. In particular, this chapter

focuses on the definition and analysis of MOSTs themselves, and it concludes with

a gallery of MOSTs used to define a large number of widely-used hardware models.

Chapter 4 then presents a series of in-depth case studies in which MOSTs are used

to perform cross-instruction set dynamic binary translation.

The rest of this chapter is arranged as follows. Section 3.2 starts with a moti-

vating example. Section 3.3 describes the MOST specification syntax. Section 3.4

presents the ArMOR framework for analyzing and manipulating and comparing

MOSTs. Section 3.5 describes related work, and Section 3.6 concludes. Finally,

Appendix A presents the MOST definitions for a range of popular hardware memory

models [Lus15].

3.2 Motivating Example

Although many programmers write parallel code under the assumption of sequential

consistency (SC), few software or hardware models today directly implement SC due

to its performance cost. As a result, application programmers or library writers must

explicitly specify additional consistency-related synchronization points, whether at

coarse grain (e.g., function call or GPGPU kernel boundaries), medium grain (e.g.,

mutex operations, the Java synchronized keyword), or fine grain (e.g., C11/C++11

low-level atomics, inline assembly). As discussed in Section 2.4, one key challenge in

each case is determining how to map a given software synchronization primitive onto

a sufficiently strong hardware primitive in the target architecture.

Figure 3.1 highlights how dangerous memory model analysis pitfalls can arise from

the use of informal specification languages and the lack of ability to easily compare

features of different memory models. Figure 3.1 depicts a commonly-used manner of
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TSO PPO
Loads Stores

Loads X X
Stores — X
Stores are multi-copy atomic

Power lwsync
Loads Stores

Loads X X
Stores — X

A- and B-cumulative

Processor Consistency
Loads Stores

Loads X X
Stores — X

Stores are not
multi-copy atomic

IBM 370/390/z-Series
Loads Stores

Loads X X
Stores — X

Store buffer
forwarding forbidden

Figure 3.1: Reordering tables for various architectures. All four appear deceivingly
similar; they differ only in the subtle details encoded below the tables using natural
language.

describing the ordering enforcement of various architectures and architectural mech-

anisms. Shown first is the total store ordering (TSO) consistency model used by

SPARC and x86 [SPA94b, OSS09a]. This table was first presented in Section 2.2.1.

More specifically, the figure depicts TSO preserved program order (PPO)—the subset

of the original (per-thread) program order relationships that an architecture guaran-

tees to maintain. As in Figure 2.3, the table in Figure 3.1 specifies whether an access

of one type (the row heading) may be reordered with a program-order-subsequent

access of another type (the column heading). Under TSO, stores may be reordered

with later loads, but all other orderings are required. The table also specifies that on

x86, stores are multi-copy atomic, as defined in Section 2.2.4.

Figure 3.1 also depicts the definition of three other architectures and/or fea-

tures which appear to enforce very similar orderings to TSO. The figure depicts

PPO for two other memory models: processor consistency and the IBM 370 memory

model [GLL+90, IBM83]. It also depicts the orderings enforced by lwsync, a fence on

the Power architecture. All three are loosely similar to TSO PPO in that they permit

only store→load reordering. Nevertheless, they differ in the extent to which they

enforce atomicity and/or cumulativity (Section 2.2.4), meaning that their apparent

similarity is in fact misleading.
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iriw litmus test in abstract form

Thread 0 Thread 1 Thread 2 Thread 3

(i1) st [x]←1 (i2) ld [x]→r1 (i4) ld [y]→r3 (i5) st [y]←1

(i3) ld [y]→r2 (i5) ld [x]→r4

Outcome r1=1, r2=0, r3=1, r4=0

iriw litmus test on x86

Thread 0 Thread 1 Thread 2 Thread 3

mov [x], 1 mov rax, [x] mov rcx, [y] mov [y], 1

mov rbx, [y] mov rdx, [x]

Outcome rax=1, rbx=0, rcx=1, rdx=0 forbidden

iriw+lwsyncs litmus test on Power

Thread 0 Thread 1 Thread 2 Thread 3

stw [x], 1 lwz r1, [x] lwz r3, [y] stw [y], 1

lwsync lwsync

lwz r2, [y] lwz r4, [x]

Outcome r1=1, r2=0, r3=1, r4=0 observable

(i1) (i2)

(i3)

(i4)

(i5)

(i6)
rfe

ppo/lwsync

fre

rfe

ppo/lwsync

fre

Figure 3.2: The iriw litmus test in various forms. The proposed outcome is observable
on Power (with lwsync fences) but not on x86-TSO, indicating that the orderings
enforced by TSO PPO and by lwsync differ. Even experts have been prone to the
pitfall of assuming that similarities between tables in Figure 3.1 indicate equivalence
of the features being represented [SHW11].
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Subtle differences between the tables in Figure 3.1 can lead to pitfalls when overly-

informal analyses are used. For example, as a sneak preview of Chapter 4, consider the

problem of executing TSO code on a processor implementing the Power architecture

memory model [ŠVZN+13]. Memory accesses on Power may be reordered liberally by

default; orderings on Power are only enforced through inter-instruction dependencies

or explicit fences such as lwsync. Given the tables in Figure 3.1, it may appear that

insertion of lwsync between every pair of accesses should be sufficient to restore all

of the orderings required by TSO. However, this appearance is deceiving, as the two

are in fact not equivalent, and lwsync is not sufficient to restore TSO. The difference

in strength between the default orderings of TSO and the orderings enforced by

lwsync can be demonstrated explicitly by a litmus test called iriw (independent

reads of independent writes), shown in Figure 3.2. In particular, although TSO

enforces orderings between the Thread 0 store to [x] and the Thread 1 load of [y]

and between the Thread 3 store to [y] and the Thread 2 load of [x], lwsync on

Power does not.

This example shows that subtle or seemingly-unimportant low-level details of a

memory model can result in differences which are visible to the programmer and

which therefore must be properly documented. If the language used to specify or-

derings states only that load→load, load→store, and store→store orderings need to

be enforced, but does not specify the degree of atomicity and/or cumulativity, then

the specification is incomplete at best and prone to unexpected or buggy outcomes

at worst.

This chapter avoids the pitfall of the above example by encoding information

about atomicity and cumulativity directly within the reordering tables themselves.

This added precision is what distinguishes MOSTs from the more common and less

precise tables shown in the figure. Each cell in a MOST lists not just an ordering,

but also the strength of the ordering (i.e., whether it is single-copy atomic, multi-
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copy atomic, or neither). New rows and columns are introduced to directly address

cumulativity (as required by iriw above). The details of these new features are

elaborated in Section 3.3. The highlight, however, is that the MOSTs will be able

to clearly distinguish between the models in a way that is both clear to humans and

amenable to algorithmic analysis.

3.3 Memory Ordering Specification Tables

MOSTs describe the reordering behavior of memory consistency models at a precise

and detailed level sufficient to support algorithmic analysis and automated compar-

isons and translation. Just as with traditional reordering tables, each cell in a MOST

specifies whether instructions of the type in the row heading must maintain their

ordering with subsequent instructions of the type in the column heading. Traditional

reordering tables are most often used to define preserved program order, the set of

program order relationships which are maintained by default. In contrast, MOSTs

can be used to define not just preserved program order, but also fences or any other

type of ordering enforcement mechanism, as shown with lwsync in the previous sec-

tion. As will be discussed below, where necessary, MOSTs also include orderings that

are enforced between accesses of different threads.

As two running examples, we will derive the MOSTs for TSO preserved program

order and for Power lwsync step by step. The complete MOSTs will be given at the

end of this section once all of the necessary notation and details have been presented.

3.3.1 Store Atomicity and Ordering Strength

The first source of imprecision in traditional reordering tables is the fact that they

do not address how orderings may have different strengths. In particular, stores may

in general perform with respect to (i.e., become visible to) different cores in a system
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Thread 0 Thread 1 Thread 2

st [x]←1 ld [x]→r1 ld [y]→r2

fence fence

st [y]←1 ld [x]←r3

Outcome r1=1, r2=1, r3=0:

Forbidden if stores are single-or multi-copy atomic
Allowed if stores are non-multi-copy-atomic

Figure 3.3: The wrc+ncfences litmus test with non-cumulative fences. Note the
subtle distinction from Figure 2.7.

at different times. The restrictions on such visibility events can be summarized into

three degrees of store atomicity, as described in Section 2.2.4 and recapped below.

Single-copy atomic stores must become visible to all cores in the system at a single

time [AM06]. Single-copy atomicity is uncommon, as it forbids even forwarding from

a private local store buffer. Multi-copy atomic stores must become visible to all cores

besides the issuing core simultaneously. In other words, a multi-copy atomic store

cannot ever be visible to some but not all remote cores. TSO (used by SPARC and

x86) falls into this category. Non-multi-copy-atomic stores may become visible with

respect to remote cores in any order and in any number of steps. Power and ARM

fall into this category.

The effect of store atomicity (or a lack thereof) is commonly depicted by the

write-to-read causality litmus test (wrc+ncfences) of Figure 3.3. This test works

as follows. If the thread 1 load reads the value written by the thread 0 store and

then forwards it along to thread 2, must thread 2 have also seen the effect of the

thread 0 store? If the store from thread 0 is multiple- or single-copy atomic, then

thread 2 must see the thread 0 store before it sees the thread 1 store. However, if the

store from thread 0 is not multi-copy atomic, then the thread 1 store may propagate

to thread 2 before the thread 0 store does, even though the thread 0 store executed

first. This violates the intuitive notion of causality: even though the thread 0 store

causes the thread 1 store value to exist, the thread 0 store need not become visible to
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Abb. Description

XS Single-copy atomic
XM Multi-copy atomic
XN Not multi-copy atomic
— Unordered

(a) Store→store

Abb. Description

X Ordered

XL Locally ordered
— Unordered

(b) Store→load

Abb. Description

X Ordered

— Unordered

(c) Other

Figure 3.4: MOST strength levels used in this thesis

Ld St
Ld X X
St — XM

(a) TSO

Ld St
Ld X X
St — XS

(b) IBM 370/390/zSeries

Figure 3.5: The addition of explicit strength levels allows MOSTs to distinguish cases
that would appear identical using traditional reordering tables. These MOSTs include
only properties addressed up through and including Section 3.3.1; the full MOSTs
are shown in Figure 3.7.

other threads before the thread 1 store. Nevertheless, this execution remains a legal

outcome on non-multi-copy-atomic architectures such as ARM and Power.

To account for such strength differences in an architecture-independent manner,

we introduce various strength levels into our MOST notation. Figure 3.4 summarizes

the ordering strength levels used to describe MORs for architectures surveyed in this

thesis. Additional (e.g., scoped) strength levels could easily be added if necessary. As

an example of the benefit of these strength levels, Figure 3.5 shows MOSTs for the

TSO and IBM 370/390/zSeries memory models. With traditional reordering tables,

the architectures would appear equivalent. With the improved precision of MOSTs,

the difference in store→store ordering strength is made explicit.

3.3.2 Same-Address Dependencies

Accesses from the same thread to the same address generally must maintain the or-

dering specified by program order. This property is sometimes called coherence1.

1As discussed in Section 2.1.3, coherence protocols often use stronger definitions of coherence (e.g.,
single writer or multiple readers), while other consistency model papers may use weaker notions such
as total orders only on stores to the same address. Chapter 6 explores this question in greater detail.
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Thread 0 Thread 1 Thread 2

(i1) st [x]←1 (i4) st [y]←1 (i5) ld [y]→r3

(i2) ld [x]→r1 (i6) ld [x]→r4

(i3) ld [y]→r2

Outcome: r1=r3=1, r2=r4=0: Allowed

Figure 3.6: TSO litmus test n7 [OSS09a]. Although (i1) and (i2) access the same
address, that store→load same-address ordering is not enforced from the point of
view of other observers.

There are exceptions; SPARC RMO and old Power models relax load→load order-

ings to the same address, while the behavior is forbidden yet observable on some

GPUs [ABD+15, AMT14, SPA94b, TDF+02]. To address this in MOSTs, we explic-

itly distinguish accesses to the same address (labeled in the MOSTs in this thesis as

“SA”) from those to different addresses (“DA”).

The notion of ordering strength from the previous subsection is also relevant to

per-address orderings. In particular, a store→load ordering may need to be enforced

locally to ensure that each load returns the value written by the latest store to the

same address. However, the same store→load ordering may not need to be enforced

from the point of view of any remote observers. This somewhat surprising example

is highlighted in Figure 3.6. In this example, (i6) can occur after (i1) but before (i2)

becomes visible to thread 2. In other words, from the point of view of thread 2, the

(i1) happens after the (i2), even though (i1) and (i2) access the same address. This

re-emphasizes the need not just to specify that orderings must be enforced, but also

to precisely specify their strength.

This added detail is enough to complete the MOSTs for SC, IBM 370, TSO, and

RMO PPO, as shown in Figures 3.7b and 3.7c, respectively. In particular, for TSO,

store→store ordering has been marked as being multi-copy atomic, and store→load

ordering is marked as being enforced, but only locally, if the instructions access the

same address. Figure 3.7d also shows how the MOST for SPARC RMO clearly
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Load Store
Load X X
Store XS XS

(a) Sequential Consistency PPO

Load to Load to
Same Diff. Store

Address Address
Load X X X
Store XS — XS

(b) IBM 370/390/z-Series PPO

Load to Load to
Same Diff. Store

Address Address
Load X X X
Store XL — XM

(c) TSO PPO

Load to Load to Store to Store to
Same Diff. Same Diff.

Address Address Address Address
Load — — X —
Store XL — XM —

(d) RMO PPO

Figure 3.7: Complete MOSTs for various single- or multi-copy atomic models

PO+ PO+
SA DA BC PO BC
Ld Ld Ld St St

PO Ld X X X X X
AC Ld X X X X X
PO St — — — XN XN

AC St — — — XN XN

(a) Power lwsync

PO BC PO BC
Ld Ld St St

PO Ld X X X X
AC Ld X X X X
PO St X X XS XS

AC St X X XS XS

(b) Power sync

Figure 3.8: Incorporating cumulativity into MOST definitions

indicates that load→load ordering of accesses to the same address does not need to

be enforced.

3.3.3 Fence Cumulativity

Another property of MORs on many weakly-ordered architectures is cumulativity

(Section 2.2.4). MOSTs address cumulativity by including A-cumulative (AC) and

B-cumulative (BC) operations as explicit rows and columns. Orderings of accesses

related by cumulativity are specified in MOSTs in exactly the same way as for accesses
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related by program order or in the same thread as the MOR in question. Figure 3.8

shows the MOSTs for the lwsync and sync fences of the Power architecture. The fact

that the sync fence (iii) enforced ordering from (i) to (iv) in Figure 2.9, for example,

is captured by the XN entry in row (AC St) and column (PO St). From the point of

view of (iii), (i) is related by A-cumulativity, and (iv) is later in program order.

3.3.4 Summary

By incorporating the details discussed above, MOSTs serve as a precise, architecture-

independent, and self-contained specification of the semantics of memory ordering

requirements (MORs). To demonstrate the usefulness of this approach, the next sec-

tion describes how to algorithmically compare and manipulate MOSTs. In addition,

Appendix A includes a comprehensive gallery of MOSTs for numerous architectures

and architectural features [LTPM15b].

3.4 ArMOR: Comparing and Manipulating MOSTs

A key benefit of the MOST notation is that it allows for flexible, algorithmic com-

parison of MOSTs, even when they originally come from different architectures. This

flexible comparison forms a key component of the compiler, mapper, and translator

use cases envisioned earlier in Section 3.1. Taken together, the comparison and ma-

nipulation approaches described in this chapter form the Architecture-Independent

Memory Ordering Requirements (ArMOR) framework.

3.4.1 MOST Partition Refinement

Because different architectures emphasize different consistency model features, as

described in Section 3.3, they may use distinct choices of rows and columns to define

their MOSTs. To resolve this, before any MOST-MOST comparisons can occur, the
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TSO PPO Pre-Refinement
PO+ PO+
SA DA PO
Ld Ld St

PO Ld X X X
PO St XL — XM

Refine−−−−→

TSO PPO Mid-Refinement
PO+ PO+
SA DA BC PO BC
Ld Ld Ld St St

PO Ld X X ? X ?
AC Ld ? ? ? ? ?
PO St XL — ? XM ?
AC St ? ? ? ? ?

(a) Because cumulativity is not explicitly addressed by the TSO PPO specification, the
MOST must be refined in order to compare it with MOSTs from the Power architecture.
However, not every cell in the refined MOST can be determined from the original MOST.

TSO PPO Post-Refinement
PO+ PO+
SA DA BC PO BC
Ld Ld Ld St St

PO Ld X X X X X
AC Ld X X X X X
PO St XL — X XM XM

AC St X X X XM XM

(b) The entries with unknown values can be filled in by reasoning that the multi-copy
atomicity of TSO directly implies that cumulativity holds automatically.

Figure 3.9: Using MOST partition refinement to compare TSO PPO and Power
lwsync

rows and the columns of the MOSTs must be refined into matching partitions. The

MOST refinement process has two steps. The first is to find the set of categories

that should be used as the row and/or the column headings for the refined MOSTs.

Standard partition refinement techniques can be used to merge the row and/or column

choices from different MOSTs into a finer-grained partition capturing both; thus we

omit a full algorithmic description here [PT87].

The second step is to fill in the cells of the newly-refined MOST. In most cases, this

simply requires duplicating the original contents of a cell that was refined into multiple

“child” cells. However, if a particular MOST feature is architecture-specific, partition

refinement can lead to scenarios in which the ordering strength of a particular cell

is left unspecified. These cells can be filled in conservatively (i.e., by assuming the

unspecified orderings are required, or by assuming they are not enforced) or using

some external reasoning.
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Figure 3.9 shows an example. The MOST for the lwsync fence of the Power

architecture (Figure 3.8) is laid out differently from the MOST defining TSO PPO

(Figure 3.7c), as TSO does not explicitly define its MOSTs in terms of cumulativity.

Here, the two MOSTs cannot yet be compared directly, even though Section 3.2 mo-

tivated the need for performing this comparison rigorously. Refining the partitions

of TSO PPO to match lwsync produces the MOST on the right side of Figure 3.9a,

and this MOST has cells whose entries cannot be directly determined from the con-

tents of the original TSO PPO MOST. In this particular case, we can reason that

cumulativity follows implicitly from the multi-copy atomicity of TSO, and therefore

the cumulative ordering cells are in fact enforced. We therefore fill in the cells cor-

responding to cumulative orderings in the manner implied by multi-copy atomicity,

resulting in the refined MOST of Figure 3.9b.

3.4.2 ArMOR Comparison Operators

Once two MOSTs have been refined (if necessary) into the same layout of rows and

columns, then a comparison of the two can be defined by comparing each pair of

corresponding cells. The cell-by-cell comparison is defined by checking whether one

strength level implies the other. For example, enforcement of single-copy atomic

store→store ordering of strength XS implies that multi-copy atomic store→store or-

dering of strength XM is also enforced, and hence that XS ≥XM . We define the

full complement of comparison operations (<,≤,=,6=,≥,>) analogously. Note that in

general, this ordering is partial, not total.

Two MOSTs may also be combined to produce a single MOST representing en-

forcement of both orderings. This can occur if, for example, there are two fences

or MORs back-to-back in a program. We define this operation as the join operator

(∨). A join operation is intuitively similar to a max operation, except that the re-

sult may not be equal to any one of the inputs, because comparison is not totally
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Power lwsync
PO+ PO+
SA DA BC PO BC
Ld Ld Ld St St

PO Ld X X X X X
AC Ld X X X X X
PO St — — — XN XN

AC St — — — XN XN

<

Power sync
PO+ PO+
SA DA BC PO BC
Ld Ld Ld St St

PO Ld X X X X X
AC Ld X X X X X
PO St X X X XS XS

AC St X X X XS XS

Figure 3.10: MOST comparison example: Power lwsync is strictly weaker than Power
sync, since each entry in the MOST for lwsync is weaker than or equal to its coun-
terpart in the sync MOST, and at least one comparison is strict.

ordered. Instead, the join produces a new MOST which is at least as strong (in terms

of ≥ above) as each of the input MOSTs. The calculation of a join is also defined

cell-by-cell; each cell in the result MOST must be an ordering strength which implies

the strength levels in the corresponding cells of both input tables. In other words, if

A ∨B = C, then C must satisfy C ≥ A and C ≥ B.

Lastly, subtraction (−) produces a MOST which specifies the orderings which are

enforced by the first MOST but not by the second. Conceptually, this corresponds

to a scenario in which a certain set of orderings is required, but a particular MOR

may only enforce some subset of those orderings; subtraction of these two MOSTs

produces the set of required orderings that remain unenforced. Again, this can be

calculated in a cell-by-cell manner.

Finally, it would be easy to consider other ArMOR comparison operators which

could be defined analogously. For example, there may be some scenarios in which

it becomes useful to define a meet (∧) operator, which would perform the opposite

operation of the join operator: it would produce a MOST which is at least as weak

as each input. Because such operators were not needed in any analyses in this thesis,

we do not consider them further.
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Power PPO
PO+ PO+ PO+ PO+
SA DA BC SA DA BC
Ld Ld Ld St St St

PO Ld X — — X — —
AC Ld — — — — — —
PO St XL — — XL — —
AC St — — — — — —

∨

Power lwsync
PO+ PO+ PO+ PO+
SA DA BC SA DA BC
Ld Ld Ld St St St

PO Ld X X X X X X
AC Ld X X X X X X
PO St — — — XN XN XN

AC St — — — XN XN XN

=

PO+ PO+ PO+ PO+
SA DA BC SA DA BC
Ld Ld Ld St St St

PO Ld X X X X X X
AC Ld X X X X X X
PO St XL — — XN XN XN

AC St — — — XN XN XN

Figure 3.11: Power PPO ∨ lwsync, where “∨” is the MOST join operator, produces
the complete set of orderings enforced when a lwsync instruction is executed.

3.4.3 ArMOR Comparison Examples

As a relatively simple example, consider a comparison of the two MOSTs of Fig-

ure 3.8. By comparing each pair of corresponding cells in the table, it is clear that

lwsync < sync: every cell in the sync MOST is at least as strong as the correspond-

ing cell in the lwsync MOST, and some comparisons are strict. In this case, the join

(∨) of the two tables is equivalent to the sync MOST.

A less trivial example of a join operation is shown in Figure 3.11. This figure

shows Power PPO being joined with the Power lwsync fence. Notably, the latter is

not strictly stronger than the former; in particular, the ordering of a store followed by

a load to the same address is maintained (with strength XL) by PPO but not at all

by lwsync. Therefore, to calcualte the complete set of orderings maintained when an
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TSO PPO
PO+ PO+ PO+ PO+
SA DA BC SA DA BC
Ld Ld Ld St St St

PO Ld X X X X X X
AC Ld X X X X X X
PO St XL — X XM XM XM

AC St X X X XM XM XM

−

Power PPO
PO+ PO+ PO+ PO+
SA DA BC SA DA BC
Ld Ld Ld St St St

PO Ld X — — X — —
AC Ld — — — — — —
PO St XL — — XL — —
AC St — — — — — —

−

Power lwsync
PO+ PO+ PO+ PO+
SA DA BC SA DA BC
Ld Ld Ld St St St

PO Ld X X X X X X
AC Ld X X X X X X
PO St — — — XN XN XN

AC St — — — XN XN XN

=

PO+ PO+ PO+ PO+
SA DA BC SA DA BC
Ld Ld Ld St St St

PO Ld — — — — — —
AC Ld — — — — — —
PO St — — X XM − XN XM − XN XM − XN

AC St X X X XM − XN XM − XN XM − XN

Figure 3.12: TSO PPO, properly refined (Figure 3.9b) − Power lwsync (Figure 3.8),
where “−” is the MOST subtraction operator. The shaded cell highlights the ordering
that distinguishes the two cases in Figure 3.2.

lwsync is executed, the two MOSTs can be joined together, resulting in the MOST

shown in the figure.

Finally, as an example of MOST subtraction, we return to the TSO PPO vs.

Power lwsync example shown earlier in the chapter. To show explicitly how the two

differ, Power lwsync can be subtracted from TSO PPO (once the latter is properly

refined). This result is shown in Figure 3.12. The fact that the subtraction result is
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non-empty not only shows that lwsync enforces fewer orderings than TSO requires;

it also shows exactly which orderings are unenforced.

A major benefit of ArMOR is that it supports manipulations that can be per-

formed entirely algorithmically. In the next chapter, we will use ArMOR to automat-

ically derive the designs of consistency model translation modules called shims, given

only the set of MOSTs used by the input and output memory consistency models.

3.5 Related Work

Model-Independent Specification Frameworks. Adve and Gharachorloo pro-

vide a comprehensive survey [AG96] of early attempts to define various consistency

models. Gharachorloo studied many of the architectures analyzed in this thesis, and

he developed a framework which covered all of those models [Gha95]. However, some

of the models in that thesis are no longer in use, and others have undergone dramatic

changes since that time. In particular, cumulativity was not yet a feature of the

Power architecture (which was at the time was called PowerPC). Furthermore, this

work took place prior to more recent formalization efforts that have shone light on

other unexpected corner cases not yet considered at the time.

Other authors have proposed frameworks which unify some consistency models,

but it is not clear whether these models apply to all modern relaxed hardware mod-

els [SN04, YGLS04]. Mador-Haim et al. analyze and classify a family of 90 single- and

multi-copy atomic memory models; they distinguish same- vs. different-address rela-

tionships, but locally-enforced orderings, cumulativity, and non-multi-copy-atomicity

are not handled by their framework [MHAM11]. Recently, Alglave et al. developed

the general-purpose herd software suite and the cats language for specifying single-

event axiomatic memory models [AMT14, AMS+12]. However, this framework does

not allow for easy comparison of different models in the way that ArMOR does.
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Petri et al. use an approach very similar to MOSTs to describe the ordering

requirements of an abstracted version of Java bytecode which they call “cookbook

high” [PVJ15]. They analyze an abstracted subset of Java containing volatile and

normal loads and stores, and they describe the ordering requirements using a large

table which vaguely resembles a MOST. Their encoding, however, can only be inter-

preted in the context of their specific model. In particular, their specification defines

orderings that need to be enforced within the “temporary store”, a feature of their

particular operational model which is used to model partial and incremental visibility

of memory accesses, and it refers explicitly to orderings on speculative accesses and

futures which exist only within the formalism.

Defining Fence/MOR Behavior. Both operational and axiomatic models of-

ten “hard-code” fence behavior into the model in some way, in the sense that the

semantics of each type of fence or ordering mechanism are built into the models in

ways that cannot easily be changed [Alg12, MHMS+12, OSS09a, SSA+11]. Owens et

al. explicitly state that the behavior of mfence on an x86-TSO processor is to flush

an idealized store buffer. The Power operational model of Sarkar et al. omits store

buffers in favor of more abstract sets of visibility events, and fences have both visibil-

ity events and (in the case of the sync fence only) acknowledgment events [SSA+11].

Adding new fences would likewise require new fence-specific operational events to

be added. The axiomatic models of Mador-Haim et al. and of Alglave et al. are

somewhat more flexible in the sense that axioms can simply be added, modified, or

removed [Alg12, MHMS+12]. However, even with this flexibility, the semantics of

less common fences such as eieio and dsb are left vague, as the industry specifica-

tions are unclear on many of the subtle details of their behaviors. To the best of our

knowledge, no existing model specifies fence types and ordering specifications in a

way that is sufficiently general and architecture-independent that inter-architecture

comparison can be rigorously performed.
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Applicability to Related Topics. Recent work has also explored the appli-

cation of consistency models to non-volatile storage [PCW14]. We see ArMOR as

applicable to memory persistency model analysis as well.

3.6 Chapter Summary

As Chapter 4 will show, MOST notation is being useful across a broad range of

compilation and translation tasks including static compilation, JIT compilation, dy-

namic binary translation, and more. ArMOR highlights the pros and cons of different

choices of fences and MORs, and we use ArMOR to provide insights that can assist

in exploring memory system design tradeoffs in future heterogeneous systems.

Appendix A presents a gallery of MOST-based definitions for well-known hardware

memory consistency models.
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Chapter 4

Dynamic Translation Between

Memory Consistency Models1

While the previous chapter demonstrated the MOST notation and the ArMOR com-

parison and manipulation framework, this chapter presents an in-depth case study of

the new kinds of technologies that ArMOR can enable.

4.1 Introduction

As earlier chapters have discussed, computer architecture is undergoing a dramatic

shift away from homogeneous multicores and towards increasing microarchitectural

and architectural heterogeneity [CRDI07, Gre11, PCC+14, Shi, Top15]. In the context

of memory consistency models, heterogeneity brings with it a number of challenges:

how to compile from a given software model onto a given hardware model, how to

design memory model-aware intermediate representations (e.g., LLVM IR, NVIDIA

PTX), how to dynamically migrate code from one ISA to another, and so on. All of

these use cases require the direct comparison of memory ordering mechanisms between

1Some of the work in this chapter was performed in collaboration with fellow graduate student
Caroline Trippel and other contributors [LTPM15a].
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different architectures and/or between different microarchitectures, and so all of the

above could serve as interesting use cases for the ArMOR framework developed in

the previous chapter. In this chapter, we highlight one use case in particular.

Recent work has demonstrated the performance and/or power benefits of per-

forming dynamic binary translation across ISAs and/or microarchitectures [DVT12,

VT14]. However, this previous work focused on opcode-for-opcode translation

and memory layout issues; it did not address memory consistency models. Inter-

consistency model translation has previously been studied only for specific cases such

as SC→TSO [DMT13, VN11].

In this chapter, we fill this gap by showing how ArMOR can be used to automat-

ically derive the designs of self-contained translation modules called shims. Shims

dynamically adapt code compiled for one memory model to execute on hardware

implementing another, without recompilation or offline code analysis, by dynami-

cally injecting fences or other enforcement mechanisms as needed into a code stream.

Other use cases for shims could include removing redundant fences to optimize per-

formance or using programmable shims as a means of allowing memory-accessing IP

blocks to be built independently of the reordering properties of the underlying infras-

tructure (e.g., the network-on-chip). In the future, we envision shims being used in

JIT compilers [Khr, NVI13a], dynamic binary translators [DVT12, VT14], dynamic

code optimizers [NVIb], and updates to reprogrammable microcode [Int13a], with the

latter used to fix implementation bugs [ABD+15].

Although translation results in some overhead, we demonstrate that this cost

can be outweighed by the benefits of migrating to faster or more power-efficient

hardware. When memory models are sufficiently compatible, we demonstrate that

the performance overhead of implementing shims in hardware can be as low as 10-

77%. In other cases, our experiments motivate ways in which instruction sets could

be augmented in ways that could mitigate much of the overheads. For example, we
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propose the addition of finer-grained fence types and/or the maintenance of otherwise-

redundant consistency metadata within the instruction set definition.

The rest of this chapter is organized as follows. Section 4.2 presents a motivating

example. Section 4.3 describes the operation of translation shims. Section 4.4 presents

an experimental evaluation methodology, and Section 4.5 presents the results of these

experiments. Section 4.6 then presents some takeaways from the experiments. Sec-

tion 4.7 presents some related work, and Section 4.8 concludes. Finally, a gallery of

shim designs is presented in Appendix B of this thesis, and the code used to generate

this appendix is open source [Lus15].

4.2 Motivating Example

Figure 4.1a shows C11 source code for the mp (message passing) litmus test. For

this test, the C11 memory ordering rules specify that if the consumer reads 1 from

y, then it must also return 1 from x. In a traditional scenario, the compiler ensures

that all of the C11 ordering rules within each thread are respected by the generated

assembly code with respect to the relevant hardware memory model. This generally

occurs by looking up the architecture-specific implementations of the software syn-

chronization constructs in a pre-calculated table like the one in Figure 2.1. On Power,

the orderings are enforced by inserting lwsync fences, as shown in Figure 4.1b. On

x86-TSO, as Figure 4.1c shows, no fences are needed.

Problems arise if one tries to perform naive binary translation of the x86 code

to execute on the Power architecture. Naive opcode-for-opcode translation would

produce the code in Figure 4.1d. Unfortunately, because the source x86 code lacks

fences, the translated code also lacks fences, meaning that the extra lwsync fences

required to prevent the bad outcome of the mp litmus test on Power are missing. This

demonstrates that if cross-ISA binary translation techniques do not account for the
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// Producer/Thread 0

*x = 1;

atomic_store_explicit(&y, 1, memory_order_release);

// Consumer/Thread 1

if (atomic_load_explicit(&y, 1, memory_order_acquire))

assert(*x != 0);

(a) C11 source code for mp

Producer/Thread 0 Consumer/Thread 1

mov 0(rdx),rax mov rax,8(rdx)

mov 8(rdx),rbx mov rbx,0(rdx)

Outcome 1:rax=1, 1:rbx=0:

Forbidden

(c) Compiled natively for x86: no fences are
needed to prevent the illegal outcome

Producer/Thread 0 Consumer/Thread 1

stw r1,0(r2) lwz r1,8(r2)

stw r3,8(r2) lwz r3,0(r2)

Outcome 1:r1=1, 1:r3=0

× Observable ×
(d) Compiled for x86 and translated to
Power. Since x86 code does not contain
fences, it becomes the job of the DBT en-
gine to insert fences. Otherwise, the bad
outcome becomes observable.

Producer/Thread 0 Consumer/Thread 1

stw r1,0(r2) lwz r1,8(r2)

lwsync lwsync

stw r3,8(r2) lwz r3,0(r2)

Outcome 1:r1=1, 1:r3=0:

Forbidden

(b) Compiled natively for Power: fences pre-
vent the illegal outcome

Power
Compiler

x86
Compiler

x86 Opcode to
Power Opcode
Naive Translation

Figure 4.1: A compiler targeting either architecture directly would produce correct
code. However, binary translation that does not account for differences in consistency
models would lead to the invalid outcome becoming observable.
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consistency model, the resulting code could produce illegal outcomes. The goal of this

chapter is therefore to generate translator shims which automatically and dynamically

determine where to insert MORs and which MORs to insert, without requiring offline

code analysis.

The above example motivates the need for cross-layer analysis, mapping, and

compilation frameworks to aware of the memory models of each layer. It also mo-

tivates the need for a memory model analysis framework which is flexible enough

to reason about both the source and the target model concurrently. In general,

there are many scenarios to which this applies: compilation from one model to an-

other (as in Section 2.4), static and/or dynamic binary translation between mod-

els [DVT12, LCM+05, Qem15, VT14], dynamic optimization [NVIb, DGB+03], and

so on. This chapter performs an in-depth case study of one of these scenarios: dy-

namic binary translation from one hardware memory model to another.

4.3 Cross-MCM Dynamic Binary Translation

In this section, we first explain the goal and design criteria for dynamic binary trans-

lator shims. We then explain how ArMOR and MOSTs can be used to automatically

derive the basic designs of shims. Finally, we discuss a number of design questions

that come up during the implementation process.

4.3.1 High-Level Operation

Conceptually, we consider dynamic binary translation to take place on a stream: an

ordered sequence of memory operations (loads, stores, or fences) passing through

some particular point in a processor or IP core. The specific format of the stream

operations depends on the location where the translation is conducted. Streams may

carry macroops, microops, or whatever other form operations may take at the chosen
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location. A stream may also carry implicit (via preserved program order) or explicit

(via fences or other MORs) ordering requirements on its memory operations. We

refer to incoming (newer) operations as upstream operations and outgoing (older)

operations as downstream operations.

The goal of a shim is to map each incoming upstream operation into zero or

more downstream operations which are strong enough to enforce the memory order-

ing requirements of the upstream operation. More specifically, to translate an explicit

upstream MOR such as a fence, the shim must emit zero or more downstream opera-

tions which combine to implement all of the ordering requirements specified by that

fence. Likewise, to handle implicit upstream ordering requirements, the shim must

enforce any upstream PPO requirements that are not enforced by downstream PPO.

An overly-conservative (and hence low-performing) but correct baseline would be

to insert the strongest possible fence between each pair of instructions. In most

cases, this is sufficient to restore sequential consistency2, let alone the requirements

of the source architecture. However, this approach is overkill, as many inserted fences

would be redundant and unnecessary. Instead, we build shims as finite state machines

(FSMs) which insert MORs lazily—just before they are actually needed. The design

and derivation of these FSMs is the subject of the next subsection.

4.3.2 Shim Finite State Machines: Overview

Conceptually, shims are finite state machines in which downstream MOR insertion

takes place while traversing certain state transitions. Each FSM state represents a

particular set of pending ordering requirements. An ordering requirement a → b of

some strength (as defined in Section 3.3.1) is said to be pending if 1) the ordering

is not enforced by the preserved program order (i.e., default ordering enforcement)

of the target architecture, 2) an access of type a has been observed, and 3) no other

2Such restorations are not universally achievable; for example, Itanium unordered accesses cannot
be made sequentially consistent [Int10].
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s0

s1

St/St Ld/mfence;Ld

Ld/Ld

St/St

(a) FSM (in agreement with previous work [DMT13, VN11])

Notation Meaning

x/y On an incoming upstream operation x, send y downstream
x/y;z On an incoming upstream operation x, send y followed by z downstream

(b) Key

Figure 4.2: Shim FSM for SC upstream and TSO downstream. Although this par-
ticular case has been studied before (and hence serves as a sanity check), analogous
shims can be generated for any pairing of source and target memory models that are
defined using MOSTs.

ordering mechanism (fence or otherwise) that would enforce the a → b ordering has

been inserted between a and b. Together, these conditions imply that before an

access of type b is emitted downstream, some explicit ordering mechanism must be

inserted downstream to enforce the a → b ordering in a sufficiently strong manner.

As mentioned above, shims insert MORs lazily in order to avoid the insertion of

redundant MORs. This laziness is implemented by emitting MORs downstream along

the transitions between certain pairs of FSM states, as described below.

As an example, consider a scenario in which a piece of code was compiled to run

on a sequentially consistent processor, but it will instead be executed on a processor

only guaranteeing to enforce TSO by default. This particular case has been studied

before in a more restricted context [DMT13, VN11]. In this way, it serves as a useful

sanity check for our algorithm. The most prominent difference between SC and TSO

is that TSO allows store→load reordering while SC does not. Previous work therefore

concluded that to restore SC on a TSO processor, mfence operations must be inserted

such that there is (at least) one mfence between each store and any subsequent load.
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PO+SA PO+DA PO
Loads Loads Stores

PO Loads — — —
PO Stores s s —

(a) Example pending orderings table. Pending
ordering tables match the layout and design of
MOSTs, but they track orderings which are pending
rather than orderings which are required.

- - -

s s -

(b) Corresponding depiction
within the shim FSM figures
used in this thesis

Label Description

s An ordering of strength XS is pending
m An ordering of strength XM is pending
n An ordering of strength XN is pending
l An ordering of strength XL is pending
X An ordering of strength X is pending
— No ordering is pending

(c) Pending orderings legend (derived from Fig. 3.4)

Figure 4.3: Pending ordering tables, which are used to described states within shim
FSMs

Figure 4.2 shows the FSM translating SC to TSO. The shim for this scenario

has two states: a starting state s0 and a second state s1. After any load, the FSM

transitions to state s0. After any store, the FSM transitions to state s1. For three of

the four transitions, the shim does not need to insert any new MORs downstream;

it simply passes the upstream operation through unmodified. For the last transition,

when the FSM is in state s1 and a load arrives upstream, the shim inserts an mfence

operation downstream before passing the store through and then transitioning to s0.

The fact that a mfence is inserted for this particular state and input fortunately

matches the intuition of previous work.

Although the particular case of SC-to-TSO translation has been studied by previ-

ous work, our use of MOSTs and the ArMOR framework provides two key advantages

over previous work. First, they are flexible enough to apply to other models beyond

SC and TSO. Second, they can be automatically generated for any source/target

pairing. All that is needed is specification of the source and target memory models

using MOSTs, as discussed in Chapter 3. We discuss the generation algorithm below.
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FSM Generation
(Algorithm 4.1)

MOSTS for
Upstream MCM

MOSTS for
Downstream MCM

Shim FSM for
Upstream-to-

Downstream Translation

Figure 4.4: Shim FSM generation process overview

Later in this chapter, the analysis of Section 4.5 analyzes a broader set of cases in

detail, and then Appendix B presents a large gallery of shim designs for a wide variety

of upstream and downstream memory models.

4.3.3 Shim FSM Generation

This subsection describes the process by which shims FSMs are generated. The

following subsection presents a detailed example of this process in action. At a high

level, the procedure is as shown in Figure 4.4: the upstream and downstream MCMs

are defined using sets of MOSTs, and the MOSTs are fed into the FSM generation

algorithm described below. The output of this process is the shim FSM translating

between the two models.

Each shim FSM state represents a particular pending ordering table. A pend-

ing ordering table tracks whether the each type of upstream operations has actually

been observed since any relevant earlier fence(s) or ordering mechanism(s). Pending

ordering tables are in a sense the inverses of MOSTs; rather than specifying which

orderings are required, they specify the orderings that have not (yet) been enforced.

Nevertheless, as the layout and contents are analogous, we use similar notations for

both. As shown in Figure 4.3, we depict pending orderings of a given strength with

the lowercase equivalent of the uppercase notation from Figure 3.4. Each cell in the
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table tracks whether an ordering of the access type in the corresponding row heading

is pending with respect to the access type in the corresponding column heading.

Shim FSMs are generated by calculating all states (i.e., all pending ordering tables)

reachable from the given start state. The start state represents the empty pending or-

dering table—the table in which no orderings are marked as pending. Upon receiving

an input (i.e., an upstream operation), the shim first checks whether any new MORs

must be inserted downstream before passing the input through. It then calculates and

transitions to the next state, reflecting the fact that the orderings considered pending

may have changed due to the receipt of a new type of input and/or the insertion of

a new ordering enforcement MOR into the stream.

The detailed shim FSM state transition function is given in Algorithm 4.1. We

first describe the general procedure and give an example demonstrating the process.

After that, we discuss broader design questions and address details that come up

when implementing shims in practice.

State Transition Function. To determine which pending orderings (if any)

need to be enforced, the algorithm does two things. First, it searches the pending

ordering table for that state to find a column corresponding to the input operation

type. This represents the fact that the input operation would effectively serve as

the b component for any table cell tracking a pending a → b ordering. All cells

marked pending in the column(s) in question must be enforced. The input operation

may not have an associated column (e.g., fences are not often listed as columns,

because fence→fence orderings need not always be explicitly tracked), in which case

this step returns the empty MOST. Second, the algorithm also checks whether the

input operation itself has an associated MOST (e.g., again, as fences would), and if

so, it adds those to the set of operations to be enforced. This addition takes place

using the join (∨) operator of Section 3.4.2. The result of this addition is a MOST
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Algorithm 4.1 Shim FSM Transition Function
Function: NextState(currentState, op):

// Enforce pending orderings in relevant column(s)
orderingsToEnforce = MOST(op) ∨ KeepColumn(currentState, op) ∨ assumedReqs

// Mark relevant orderings in relevant row(s) pending
newOrderings = KeepRow(upstreamPPO − downstreamPPO, op)

// Find a MOR which enforces the orderingsToEnforce, if necessary
insertedMOR = WeakestSufficientMOR(orderingsToEnforce)

// propagated = pending and not enforced by the inserted MOR
propagatedOrderings = state − MOST(insertedMOR)

// Join old and new orderings to calculate the next state
nextState = propagatedOrderings ∨ newOrderings

// If necessary, insert the new MOR before passing the input operation through
if insertedMOR 6= ∅ then

Emit(insertedMOR)

// Pass the input operation through
Emit(op)

// Done; transition to the next state
return nextState

// Helper functions used above:

KeepColumn(s, col)[i][j] =

{
− j 6= col

s[i][j] j = col

KeepRow(s, row)[i][j] =

{
− i 6= row

s[i][j] i = row

orderingsToEnforce describing the pending orderings that must be enforced. We

omit a discussion of assumedReqs for the moment; see Section 4.3.5 for details.

If any pending orderings do need to be enforced, the algorithm searches for the

weakest (i.e., fastest) MOR which is sufficiently strong (according to the ≥ operator

from Section 3.4.2), and it inserts that MOR downstream. This has the effect of

subtracting (as defined in Section 3.4.2) the enforced orderings from the current set of

pending orderings. This subtraction produces a new intermediate pending orderings

table called propagatedOrderings.
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Next, the shim FSM algorithm also then tracks the fact that each input operation

will serve as the a component for future a→ b orderings. This is tracked by marking

cells in the row corresponding to the input operation type as pending if, for that

particular cell, the upstream PPO is stronger than the downstream PPO (according

to the ≥ operator of Section 3.4.2). This produces a second intermediate pending

ordering table newOrderings. The two intermediate tables are then joined to form

the pending ordering table nextState representing the next state of the FSM.

Lastly, the operation(s) can be emitted downstream. First, if the above steps that

a new MOR needed to be inserted downstream to enforce some pending ordering(s),

this inserted MOR is emitted downstream first. Second, the original upstream in-

put operation is propagated downstream. Once, this is completed, the transition is

complete, the state has been updated, and the next iteration can begin.

In certain degenerate cases, the above algorithm may produce a shim that consists

of a FSM with only a single state. This corresponds to cases in which the shim behaves

the same in all scenarios, and hence the FSM can be condensed into a single state to

save performance/power/area overhead. As we show in later sections, this degenerate

case does occur in practice. We therefore refer to shims with more than one distinct

state as stateful shims and to those which reduce to a single state as stateless shims.

Note that while the description above presents the conceptual overview of shim

FSM generation, all of the necessary calculation and analysis described below can be

performed offline and in advance. Furthermore, the state space of the shim FSMs

is small enough that the space can be explored completely in just seconds. As Sec-

tion 4.5.1 shows, shim FSMs generally end up with a very small number of states,

and hence they can be both derived and implemented very cheaply.
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s0

- - -

- - -

s1

- - -

s s -

?

?

St/St Ld/??

St/??

Ld/Ld

(start)

(a) Assume at the start of this example that state s0 has already been explored, and
that state s1 is currently being explored.

PO+SA PO+DA PO
Loads Loads St

PO Ld — — —
PO St s s —

(b) The pending orderings table state
s1 in Figure 4.2. During the shim gen-
eration process, state s1 represents the
above pending orderings table.

PO+SA PO+DA PO
Loads Loads St

PO Ld — — —
PO St — s —

(c) Normal loads do not have their
own MOSTs, so orderingsToEnforce

is formed by keeping the column of Fig-
ure 4.5b which corresponds to the input
operation.

PO+SA PO+DA PO
Loads Loads St

PO Ld X X X
PO St s s s

(d) The MOST for mfence is strong
enough to enforce the pending order-
ings of Figure 4.5c. Since mfence

is the only choice, it is also the
WeakestSufficientMOR and hence the
insertedMOR.

PO+SA PO+DA PO
Loads Loads St

PO Ld — — —
PO St — — —

(e) newOrderings is calculated by
keeping the “PO Ld” row of the differ-
ence between SC PPO and TSO PPO.
In this case, the input rows are identical
(Figure 3.7, after proper refinement),
and so the difference is empty.

PO+SA PO+DA PO
Loads Loads St

PO Ld — — —
PO St — — —

(f) propagatedOrderings is calculated
by subtracting the MOST for the
insertedMOR from the current state.
In this case, the subtraction produces
an empty MOST.

PO+SA PO+DA PO
Loads Loads St

PO Ld — — —
PO St — — —

(g) nextState is calculated by joining
Figures 4.5e and 4.5f. In this partic-
ular case, the nextState matches the
already-explored state s0.

s0

- - -

- - -

s1

- - -

s s - ?

St/St

Ld/mfence;Ld

Ld/Ld

St/??

(start)

(h) The above analysis adds one new transition to the FSM. From here, the algorithm
continues exploring all unexplored possibilities until the FSM converges.

Figure 4.5: Example of shim FSM generation (Algorithm 4.1) in action for the case
of translating SC to TSO (as in Figure 4.2).
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4.3.4 Shim FSM Generation Example

As an example of how Algorithm 4.1 is used to generate shim FSMs, consider Fig-

ure 4.5. This figure continues the example started in Figure 4.2. It shows how MOSTs

can be used to derive one particular transition in that FSM. Other transitions in the

FSM are derived analogously.

This example starts from the partially-explored FSM of Figure 4.5a, and it calcu-

lates what should happen when the FSM is in state s1 and a load to a not-yet-seen

address is received. The pending orderings table for state s1 is shown in Figure 4.5b.

The algorithm searches the column of this table to find orderings that need to be

enforced before the load is propagated (Figure 4.5c). Since there is at least one such

pending ordering, the algorithm searches for a sufficiently-strong MOR to insert. In

this case, there is one option: mfence (Figure 4.5d). An mfence is therefore emitted

downstream before the load is passed through the shim.

To calculate the next state, the algorithm performs a similar set of calculations.

First, it determines whether any new orderings need to be marked as pending. Since

the “PO Ld” row of SC PPO and TSO PPO are identical (once they are properly

refined), their difference is the empty MOST, and so no orderings need to be enforced

(Figure 4.5e). Second, it determines whether any old pending orderings need to be

propagated. Intuitively, the emitted mfence has the effect of enforcing all orderings,

and so none need to be propagated. Using MOSTs, the subtraction of the mfence

MOST from the current state indicates the same thing (Figure 4.5f). Third, the results

of the two previous steps are joined together to form the next state (Figure 4.5g).

In this particular example, the next state happens to correspond to a state that

has already been explored: state s0. Figure 4.5h therefore adds a transition from s1 to

s0, indicating that upon receiving a load, an mfence should be emitted downstream

before the load is passed through, and that the next state is s1. In other cases, the

edge may point to an as-of-yet unexplored state, in which case the new state would
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be created and the state space exploration algorithm would recursively explore all

possible transitions from that new state as well. Finishing this example, running

Algorithm 4.1 to explore the final unexplored edge in Figure 4.5h would create the

self-loop from/to s1 as seen in Figure 4.2, and this would complete the shim generation

process.

4.3.5 Design Considerations

Handling Non-Visible Operations. One subtlety in Algorithm 4.1 is the use of

assumed pending ordering requirements, or “assumedReqs”. This property handles

the practical need to support situations in which accesses from certain rows and/or

columns are not directly observable by the shim. Most commonly, this refers to

situations in which a shim within one core cannot see some or all of the events

happening at other cores, even though cumulative fences (Section 3.3.3), for example,

require cross-core orderings to be tracked and enforced. Other similar situations are

discussed below. Regardless of the reason, events which cannot be directly observed

must be conservatively assumed to be pending ordering enforcement.

The “assumedReqs” pending orderings table contains a set of orderings which are

permanently marked as pending and which are added during every transition. This

approach allows shims to translate correctly even when the necessary information

is only partially available. If the information were to somehow become available

later (e.g., in a subsequent microarchitectural revision), the “assumedReqs” could be

weakened accordingly, and a new (and likely more efficient) shim could be regenerated.

Special Case Optimization. We include one special-case optimization in our

evaluations: we allow a store→store ordering of strength XS to be enforced by a

MOR with enforcing store→store ordering of strength XM if store→load ordering

of strength X is marked as pending. Intuitively, this captures the notion that the

only difference between single- and multi-copy atomicity is that forwarding from a
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local store buffer is permitted only in the latter. This optimization, which is used

implicitly in previous work [DMT13, VN11], makes shims slightly lazier and hence

improves performance.

Microarchitectural Placement. ArMOR requires that a stream be sorted into

a legal visibility order so that preserved program order needs can be detected. This

means that when shims are implemented in hardware, their placement within the

pipeline matters. Placing a shim too early in the pipeline may render it unable to track

same/different address dependencies (Section 3.3.2), as the addresses may not have

been resolved by that point. Placing it at a later location through which non-memory

instructions do not pass may prevent it from being able to observe information such

as inter-instruction dependencies. In such cases, these unobservable dependencies

would have to conservatively be included into “assumedReqs” (Algorithm 4.1).

Likewise, shims may not be able to observe any accesses made by other cores, as

the mechanisms that would be needed to enable such visibility would likely have large

performance/power/area overheads in software and/or in hardware. To handle such

cases, any orderings which explicitly refer to accesses being made by other cores (e.g.,

for cumulative fences) would need to be conservatively included into “assumedReqs”

as well.

Our hardware evaluation (Section 4.4.2) places a shim into the issue stage of a

pipeline, as all necessary information about accesses in program order is observable

at that point. Our software dynamic binary translation-based evaluation operates on

the full stream of instructions in their original program order.

Microarchitecture-Level Integration. The analysis in this section so far has

been at the level of the architecture—i.e., at the level of the hardware specification.

However, ArMOR and the shim FSM generation algorithm easily adapt to situations

in which the set of fences provided microarchitecturally varies from the architectural

specification. Section 4.4.2 provides one example: the pipeline analyzed in that sec-
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tion implements a finer-grained set of fence choices than would otherwise be available

according to the architecture specification. We therefore adapt the MOSTs and the

analysis of that section to include those fences.

Laziness. Lazy insertion is not the only possible design approach. More eager

insertion could make it easier to hide the latency of inserted fences, but it may also

result in inserting a larger number of fences. Our experience is that the benefits of

laziness outweigh the small potential latency hiding of eagerness.

Atomic Instructions. Atomic (i.e., uninterruptible) instructions such as

compare-and-swap can be easily added into our model. If atomics are considered

a separate class of instruction from loads and stores, they would simply form new

MOST rows and columns. Alternatively, if atomics are treated as a bundled load-

store pair, Algorithm 4.1 could be modified to look up multiple rows and columns

for such instructions, rather than just one. Either solution is viable as long as the

ordering implications of such operations are correctly specified.

Downstream Non-Fence MORs. Downstream MORs need not be fences.

It is possible, for example, to use lightweight MORs such as ARM/Power address

dependencies as well. Doing so would require more than just fence insertion; it would

also require rewriting instruction operands, but dynamic binary translators already

do this regularly [LCM+05].

Stream Interruptions. Streams may be interrupted by events such as context

switches and hence lose their state. A conservative solution is to simply insert a full

fence instruction and then return to the start state. A more aggressive solution would

be to jump to a state which marks all orderings not enforced by the downstream PPO

as pending. In either case, ArMOR’s fundamental operation remains the same.

Uniqueness. There may be multiple valid shim FSMs for a given scenario, de-

pending on the search order of WeakestSufficientMOR in Algorithm 4.1, whether the

emission of multiple downstream fences are allowed, and so on. We highlight one
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case study in our results section: although the MOR specification of the x86 mfence

instruction and LOCK prefix are identical, their performance costs are not. In that

case, the performance analysis becomes the deciding factor for which MOR to use.

Dynamically Changing Partition Subsets. Algorithm 4.1 as shown assumes

that the categorization of a given instruction into a particular row and column is based

only on static properties of that instruction. In particular, if an access were to change

from being in one partition to being in another, Algorithm 4.1 as shown would not be

able to track that movement. However, the assumption that the classification stays

constant is not always true. For example, AMD GPUs contain a fence s waitcnt

<n> which only enforces ordering with respect to accesses other than the most recent

n. If the classification of a memory access can change, the state transition function

must be modified to account for such changes. In practice, few MORs are defined

this way, and so a cheaper option may be to overapproximate the state and avoid the

need for such dynamic reclassification altogether.

Insufficient Target MORs. In almost all cases, we assume there is a sufficiently

strong set of downstream MORs to support any upstream ordering requirement. In

rare cases, this may not actually hold, and then Algorithm 4.1 would fail when search-

ing for the WeakestSufficientMOR. This is not a limitation of ArMOR, but rather

an inherent limitation of certain architectures themselves. For example, sequential

consistency cannot be enforced onto Itanium relaxed loads and stores, even with mf

fences interleaved [Int10], and NVIDIA GPUs simply do not provide any mecha-

nism for enforcing cumulativity or atomicity [NVI13b]. In practice, there are often

workarounds such as replacing Itanium relaxed loads and stores with ld.acq and

st.rel, respectively. For all architectures surveyed in this thesis other than GPUs,

a sufficiently strong MOR is in fact present, and so this limitation does not appear.
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Property Real System Simulator

System 8-core 4-core
CPU Xeon X7560 gem5 O3

Frequency 2.27 GHz 2.0 GHz
Pipeline OoO OoO

L1I Cache 32kB, private 32kB, private
L1D Cache 16kB, private 64kB, private
L2 Cache 256kB, private 2MB, shared

Cache coherence protocol MESI MOESI hammer
Memory timing model N/A Ruby

Table 4.1: System configurations

Speculation. ArMOR does not inhibit the use of speculative ordering en-

forcement techniques [DMT13, GGH91], as long as these techniques maintain the

architecturally-required behaviors.

4.4 Evaluation Methodology

In this section, we describe our evaluation of the translation shims. We first provide

a characterization of the breadth of applicability of ArMOR by generating shims for

a number of upstream and downstream models. We then evaluate the performance

of a subset of these models. We break our performance evaluation into two parts.

We first implement ArMOR shims as software Pintools [LCM+05]. With near-native

speeds, this approach allows for rapid exploration of various design possibilities. We

then evaluate ArMOR in hardware by inserting shims into the gem5 O3 simulator

pipeline [BBB+11].

4.4.1 Pintool-Based Exploration Methodology

Software-based dynamic binary translation can be used by architects to explore the

performance impact of different hardware ordering requirements, fence implementa-

tions, or translation approaches prior to their being hardened into a processor. It can

also be used as an implementation in and of itself, whether it be standalone, within
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an emulator, within a virtual machine manager, or as a component within any other

tool. We use the Pintool approach to quantify the performance impact of stateful-

ness (as opposed to naive statelessness) in shims, and we explore some additional

performance-oriented optimizations.

We use Intel Pin [LCM+05], an x86-based dynamic binary translation framework,

to implement our software shims. Pin is a widely-used tool which allows users to write

custom “pintools”, or instrumentation routines, to perform the desired analysis. Be-

cause Pin executes on the x86 architecture and therefore has TSO as the downstream

model, we use SC as the upstream model.

We evaluate three shim configurations. The first is the naive case which always

inserts a LOCKed instruction or mfence between each pair of memory instructions.

The second is the stateful shim generated by Algorithm 4.1 and shown in Figure 4.2.

Third, the ISA-assisted scenario approximates the benefits of augmenting an ISA to

track software- or compiler-provided information about accesses that do not need to

enforce consistency. An increasing body of work has proven the benefits of provid-

ing hardware support for finer-grained specification of memory consistency behav-

ior [CKS+11, SNM+12]. Because we are constrained by Pin’s need to execute on real

hardware (which has no such ISA support), we instead present approximations which

closely model the performance benefits of enabling such modifications.

The ISA-assisted scenario considers two ways in which the ISA can be augmented.

First, certain accesses might be marked thread-private and hence not subject to re-

ordering rules. Even relatively straightforward compiler analysis is able to classify

as many as 81% of memory accesses [SNM+12] as private. We approximate this by

inferring thread-privacy for all accesses to the stack. While this is not safe in general,

our analysis reveals that it is safe for our benchmark suite3. This approximation

3There are cases in which worker threads access objects allocated by the main thread, but these
are properly synchronized via pthreads.
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classifies 75% of accesses as thread-private, very close to the percentage found by the

previous work.

Second, we model the benefits of a compiler annotating memory accesses as being

data-race-free, and thus not subject to any reordering constraints [AH90, BA08]. For

our pre-C11/C++11 benchmark suite, all synchronization accesses occurred through

libraries such as libpthread or inline assembly, with the remainder of the program

accesses remaining data-race-free. Because library behavior may not be precisely

known at compilation time, we conservatively assume that all library code is poten-

tially subject to races (and hence needs to be analyzed by the shim).

We run Pintool experiments on the real system from Table 4.1. We use bench-

marks from PARSEC [Bie11] with the native input set and four threads. We take

three measurements for each scenario: the non-Pintool native runtime of the bench-

mark (“native”), the runtime of the benchmark with analysis enabled but fence in-

sertion itself disabled (“instrumentation”), and the runtime with fence insertion en-

abled (“shim”). This allows us to roughly separate the overhead of the shim from

the overheads of Pin itself. We use LOCK-prefixed add instructions as the primary

downstream MOR; these are equivalent to mfence but 28% faster in our experiments.

4.4.2 Hardware Simulation Methodology

While Pin offers opportunities for early exploration, hardware support can further

accelerate translation. Here we study incorporating shims as hardware FSMs within a

processor pipeline. In particular, we use the gem5 simulator to implement a hardware

shim within the issue queue of the gem5 O3 pipeline [BBB+11]. In the issue queue,

the shim has enough information to properly track both instruction dependencies

and preserved program order. It does not, however, have enough information to

distinguish same- vs. different-address relationships, and so the experiments in this

section always conservatively assume that both need to be enforced.
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PO+ PO+ PO+ PO+
SA DA SA DA
Ld Ld St St

PO Ld X X X X
PO St X X XS XS

(a) Full fence

PO+ PO+ PO+ PO+
SA DA SA DA
Ld Ld St St

PO Ld X — X X
PO St XL — XM XM

(b) PLO PPO

PO+ PO+ PO+ PO+
SA DA SA DA
Ld Ld St St

PO Ld X — X X
PO St XL — XS XS

(c) MSFence

PO+ PO+ PO+ PO+
SA DA SA DA
Ld Ld St St

PO Ld X X X X
PO St XL — XM —

(d) PSO PPO

PO+ PO+ PO+ PO+
SA DA SA DA
Ld Ld St St

PO Ld X X X X
PO St X X XM —

(e) MLFence

PO+ PO+ PO+ PO+
SA DA SA DA
Ld Ld St St

PO Ld X — X X
PO St XL — XM —

(f) LSO PPO

Figure 4.6: Available downstream PPO and MORs of the gem5 O3 simulated CPU.

By design, gem5 decouples the pipeline model itself from the ISA being imple-

mented, and so the same pipeline can be used for each scenario. This fact makes gem5

a good simulation environment for isolating the effect of memory consistency models

from the effects of the ISA itself. As Figure 4.6 summarizes, the gem5 O3 pipeline

is multi-copy-atomic and inherently enforces load→store ordering, while load→load

and/or store→store ordering enforcement (of strength XS) are optional. We adjust

these options to implement a variety of downstream models.

At the gem5 O3 issue queue, regardless of the architecturally-defined fences, three

downstream fences are available microarchitecturally: a load fence, a store fence,

and a full fence. The MOSTs for these fences are also summarized in Figure 4.6.

The fences are implemented microarchitecturally by treating an associated memory

access as non-speculative. This requires that before the access executes, it must be

at the head of the reorder buffer and the store buffer must be empty. The associated
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St/St

Ld/MLFence;Ld

St/St

Ld/MLFence;Ld

St/St

St/St

Ld/MLFence;Ld

(start)

MLFence
PO PO
Ld St

PO Ld X X
PO St X —

Figure 4.7: The shim FSM generated for SC on PLO (for visual clarity, the MOST
and pending ordering tables are abbreviated). The bottom two states are transient
because there are no downward arrows to return to them from the top two states.
The top two states are redundant because their behavior is identical. Therefore, this
FSM reduces to a single state.

operation is also treated as a load and/or store barrier to prevent subsequent memory

microops of the relevant type(s) from executing until it has itself completed.

Table 4.1 gives specifications for our simulated system. Because the generated

FSMs are small, we assume they can be updated in parallel with other pipeline

operations with no incurred latency. We use PARSEC [Bie11] benchmarks with the

simsmall input set and 4 threads. We execute these benchmarks on four downstreams:

TSO, PSO, PLO (partial load order, named by analogy to SPARC PSO), and LSO

(load→store order enforced). We compare the performance for each case, including

both stateless and stateful shims.

4.5 Experimental Results

4.5.1 Shims for a Broad Range of Scenarios

To demonstrate the full breadth of applicability of ArMOR, we automatically generate

shim FSMs for various combinations of the upstream and downstream consistency

models. A summary is shown in Table 4.2; the shaded subset highlights the scenarios

evaluated in the next two sections. The full analysis is presented in Appendix B. We

also optimize away transient and redundant states, as in Figure 4.7, to reduce the
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Model Informal Description

SC Sequential consistency
TSO SPARC Total Store Ordering
PSO SPARC Partial Store Ordering
PLO Partial load ordering: TSO, except load→load ordering is not enforced
LSO Only load→store ordering is enforced
RMO SPARC relaxed memory ordering

RMO+
RMO variant with sixteen fences representing four independent choices
of load→load, load→store, store→load, and store→store ordering

PwrA A multi-copy atomic variant of Power
Pwr Power

ARM ARMv7

(a) Memory models evaluated (see Appendix B for details)

Target MCM

Source MCM TSO PLO PSO LSO RMO RMO+ PwrA Pwr ARM

SC 2 1 2 1 1 2 2 1 1
TSO - 2 2 4 3 5 4 1 1
PLO - - 2 2 2 4 3 1 1
PSO - 2 - 2 3 3 2 1 1
LSO - - - - 2 2 2 1 1
RMO - - - - - - 1 1 1
PwrA - - - - - - - 1 1
Pwr - - - - - - - - 1

ARM - - - - - - - 1 -

(b) Number of states in shim for each pairing of upstream and downstream models.
The performance of the shaded FSMs is evaluated in Section 4.5.3.

Table 4.2: ArMOR analysis can be used to generate shims for a broad range of
upstream and downstream memory model pairings

implementation cost. These results show that shim FSMs are generally very small,

and hence that they can be implemented in practice with little area cost.

Notably, adding state does not help in every situation. For example, Figure 4.8

shows that the FSM generated for TSO upstream and ARM/Power downstream min-

imizes to a trivial machine which always inserts sync. While it may seem to be

overkill to insert a sync before each memory access, Figure 3.2 highlighted that any-

thing weaker would permit behaviors such as iriw to become illegally observable.

In fact, every multi-copy-atomic upstream paired with a downstream allowing non-

multi-copy-atomic stores produces a FSM which is just as inefficient. This is not a
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St/sync;St
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sync

Ld/sync;Ld
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mfence/sync

Ld/sync;Ld
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sync;St

mfence/sync

(start) sync
PO PO
Ld St

PO Ld X X
PO St X X

Figure 4.8: Automatically-generated shim FSM for TSO upstream and Power down-
stream (for visual clarity, the MOST and pending ordering tables are abbreviated).
This FSM can be simplified into a single state.

shortcoming of ArMOR, but rather a fundamental difference in the behavior of stores

on each architecture. We return to this observation in Section 4.6.

Lastly, we note that we attempted to target GPUs as well, but we were limited

both by the incompleteness of current specifications as well as, more fundamentally,

a lack of both multi-copy atomicity and cumulative fences [ABD+15]. With neither

feature, GPUs simply have no means by which to enforce implicit (e.g., on TSO) or

explicit (e.g., Power sync or ARM dmb) cumulativity requirements, and hence they

are unable to serve as downstream targets for translation.

4.5.2 Performance of Software Shim Implementations

Figure 4.9 shows the performance of the three Pintool shim configurations of Sec-

tion 4.4.1. We normalize to the runtime of each benchmark when it is compiled for

x86-TSO and executed natively on x86-TSO hardware; this conservatively attributes

the inherent overhead of SC vs. TSO to shims as well. Ideally, an optimized “native

x86-SC” machine would be a more appropriate baseline, but such hardware is not

readily available.

Each level of optimization provides dramatic performance increases over more

naive configurations. The stateless shim has a geometric mean overall performance
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Figure 4.10: Simulated performance with hardware shims, x86-TSO software and
varying hardware models.

cost of 9.33×. The stateful configuration improves this to 3.05×. Finally, making

use of the ISA augmentations discussed in Section 4.4.1 reduces the total overhead

to just 1.33×.

The instrumentation overhead was approximately the same for each Pintool—

1.31× on average. This shows that the shims themselves do not introduce significant

overhead beyond the overhead of instrumentation itself—175% in the case of our

conservative stateful configuration, but only 3% in the more aggressive ISA-assisted

case. These numbers demonstrate that shim-based translation can take place with

low or, under the right conditions, even negligible overhead in practice beyond what

is already needed to perform dynamic binary translation. They also demonstrate the

value of using software-based DBT as a tool for exploring the design space of and

profiling the use of synchronization in practice.
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Figure 4.11: Simulated performance with hardware shims, x86-SC software and vary-
ing hardware models, normalized to x86-TSO software on x86-TSO hardware as de-
scribed in the text.

4.5.3 Performance of Hardware Shim Implementations

Figures 4.10 and 4.11 show the overheads of running x86-TSO and x86-SC software,

respectively, on cores with weaker hardware memory models. Stateful shims are shown

with striped bars; however, the optimized FSMs for SC-on-PLO and SC-on-LSO are

stateless, and so we draw only one bar for these. We normalize to x86-TSO hardware,

just as we do for the Pintool results.

For x86-TSO upstream, in some cases, the benefits of statefulness are negligible.

Since upstream LOCKed operations and fences are rare under x86-TSO, these FSMs

turn out to mostly stay in a single state equivalent to the stateless case. For this

reason, implementations may choose to treat the lightly-used state as transient (as in

Figure 4.7) and optimize it away to make the FSM even cheaper than it already is.

Notably, if the shims had been placed in a position at which they could distin-

guish and track whether acceses were made to the same or to different addresses, then

the distinction between stateful and stateless shims would become more meaningful.

However, this positioning and/or tracking may itself introduce new area, power, or
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performance overheads which may outweigh the benefits of the more sophisticated

shims. These kinds of design decisions must be made on a case-by-case basis. Fortu-

nately, ArMOR provides the flexibility to derive shim designs for any such case.

In all cases, the overheads remain well within an acceptable range for dynamic

binary translation [BCC+10, LCM+05]: even the worst case overhead of SC on RMO

requires a geomean slowdown of only 77%. In the best case, TSO on PSO, the

overheads are as small as 10%.

4.6 Takeaways

Our explorations both via Pintools and via simulation of hardware-supported shims

have led to several major takeaways. First, architectures should provide a way to

optionally make stores multi-copy atomic. A multi-copy atomic variant of Power,

labeled “PwrA” in Table 4.2, does allow for more efficient FSMs than does the original

non-multi-copy-atomic version. If the user is sure that no iriw-like behavior will

occur, then multi-copy atomicity can be disabled to improve performance; otherwise,

it can be enabled to ensure safety4. Notably, ARMv8 has taken this approach with

new load-acquire and store-release opcodes [ARM13]. ArMOR provides a rigorous

methodology for performing this analysis.

Our second observation is that the more downstream MORs (i.e., fence variations)

are available, the more intelligent the translation can be. The difference between

“RMO” and “RMO+” in Table 4.2 is that the former implements only the three

fences shown in Figure 4.6, while the latter implements sixteen possibilities, with one

choice each for load→load, load→store, store→load, and store→store. Having finer-

4The iriw litmus test is frequently debated in the memory model community; it is generally
considered esoteric and unlikely to occur in reality, and the cost of preventing it is generally large,
yet the behavior is highly counterintuitive and as a result it is often forbidden in spite of the
cost [Alg12, BA08].
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grained downstream fences allows for smarter fence choices and higher-performance

implementations.

Third, ISAs and intermediate representations should maintain consistency meta-

data even if it is redundant. In particular, ISAs with strong models (e.g., SC, TSO)

carry little information about consistency in the binary, as it is mostly redundant with

PPO. However, this lack of metadata makes translation much more difficult, as the

overly-constrained preserved program orderings of a strong model like TSO are them-

selves costly and mostly unnecessary. Specifically, weak software models derive their

performance from enforcing strong ordering only on specially-marked synchroniza-

tion accesses. On strong hardware models in which both types of accesses map onto

the same loads and stores, non-synchronization accesses can no longer be reordered

freely, even when translation back onto a weaker model, as the metadata has by that

point been lost. Keeping consistency information in the ISA would provide numerous

benefits (shown in Section 4.5.2 and previous work) at the cost of modest code size

increase. In such a scenario, shims can be used to dynamically remove upstream

synchronization that becomes redundant under a stronger downstream model.

Finally, we note that non-multi-copy-atomic architectures cannot ignore both cu-

mulativity and store atomicity. If they do, then there simply is no way to implement

communication across more than two cores safely. While current hardware that does

so (e.g., GPUs) simply limits the amount of inter-thread communication that can take

place, the increasingly heterogeneous hardware of the future will demand the ability

to perform such many-threaded concurrent tasks. Fortunately, ArMOR provides a

way to evaluate those needs early in the design process.
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4.7 Related Work

Fence Insertion and/or Elimination. The work of Alglave et al. [AMSS10] has a

goal similar to ours in that it studies how to restore the behavior of one architecture

by inserting fences on a weaker architecture. Their definition of cumulativity is subtly

different than the definition given in the Power architectural specification [IBM13],

and their proof-based method does not readily adapt to a modified definition. More

critically, their solution is declarative: it specifies only a static correctness condition

rather than a constructive dynamic translation method. Furthermore, their correct-

ness condition depends partially on inserting fences between loads and their source

stores. ArMOR makes no such assumption about identifying a load’s source store, as

such information is often simply unavailable.

Since the work of Shasha and Snir [SS88], researchers have considered top-

ics such as verifying the insertion of fences to implement a stronger consistency

model [BAM07, KVY10] and/or the elimination of redundant fences [VN11]. Others

focus on automatically determining where to insert fences [Alg12, HR07], and also

on incorporating such methods into a compiler [LP00, SFW+05].

Cross-ISA Translation. DeVuyst et al. [DVT12] study heterogeneous-ISA code

migration. They focus on laying out data in an architecture-independent manner, and

they use compiler support and bursts of dynamic binary translation to smooth the

migration process. They assume, however, that the source and target ISAs have

identical consistency models; they do not address translation of memory ordering

requirements.

Various case studies have studied translation in more specific contexts, including

Baraz et al. [BDE+03] for x86 code on Itanium processors, Higham and Jackson [HJ06]

for SPARC to and from Itanium, and Gschwind et al. [GEAS00] from the “firm” model

(similar to TSO) onto Power. Industry white papers [Bro02] have also discussed this
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topic. None of these techniques, however, easily generalize to other architectures as

ArMOR does.

4.8 Chapter Summary

This section provided an in-depth case study of the broad applicability of MOSTs.

It demonstrated not only how ArMOR analysis techniques can be applied to various

existing architectures, but also how they can be applied to varying microarchitec-

tures and/or to hypothetical ISA extensions as well. Furthermore, it showed how

ArMOR can be used to deliver both correctness and performance in use cases which

are forward-looking and which will likely become increasingly relevant. In summary,

we believe that ArMOR can inspire the designs of future heterogeneity-aware archi-

tectures and that it can be easily extended to support many other MCM analysis use

cases in the future.

Appendix B presents a gallery of dynamic binary translation shims for a wide

range of upstream and downstream memory model combinations.
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Chapter 5

PipeCheck: Specifying and

Verifying Microarchitectural

Enforcement of Memory

Consistency Models

Previous chapters have focused on developing a specification language and an analysis

framework for memory models. This chapter and the next instead focus on specifying

and verifying how a given memory model specification is actually implemented at the

microarchitecture level.

5.1 Introduction

Memory model analysis performed at the architecture level—that is, at the level of

the specification provided by vendors—intentionally abstracts away the details of any

one particular microarchitecture itself. This fact leaves such models unable to de-

scribe how the ordering requirements of the memory model are actually enforced.
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In particular, although any one particular microarchitecture may implement opti-

mizations such as out-of-order execution or speculative reordering of instructions,

architecture-level memory models are by design unable to capture such behaviors or

to check whether they correctly enforce all required orderings. This leaves a large

and problematic verification gap between the careful formal analysis happening at

the software and architecture levels and the reality of how high-performance or even

commodity processors implement those models at the microarchitecture level. As

a result, implementations of memory system features frequently contain bugs which

can only be solved through high-overhead patches [AMD11, ARM11] or by simply

disabling new features altogether [Int15].

This chapter presents PipeCheck, a tool and methodology for specifying

microarchitecture-level multi-event axiomatic consistency models and for auto-

matically verifying that those models meet (or exceed) the requirements of a given

architectural consistency model. Each microarchitecture-level model consists of a set

of localized axioms about the behavior of the microarchitecture at various physical

locations. The relationships prescribed by these axioms are then merged to form

microarchitectural happens before (µhb) graphs, an extension of standard happens-

before graphs used in axiomatic memory models to describe microarchitecture-level

events and happens-before relationships. Using these graphs, PipeCheck verifies

that each ordering edge that must be preserved according to the architectural

consistency model (e.g., each store→store ordering for Total Store Ordering (TSO))

is in fact provably maintained by the microarchitecture. As a result, PipeCheck

reduces the problem of verifying consistency model implementation correctness to the

more tractable problem of verifying a series of independent axioms about ordering

enforcement at various points in the microarchitecture. It also reinterprets abstract

architecture-level axioms such as preserved program order (Section 2.2.1) as propo-
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sitions which can themselves be re-derived from the same microarchitecture-level

axioms.

At the microarchitecture level, consistency is collectively enforced by the combina-

tion of many components: the pipeline, the cache hierarchy, the coherence protocol,

and so on. Furthermore, while properties such as coherence and consistency are often

intentionally decoupled at the architecture level [Mar05], they are nevertheless often

tightly coupled at the microarchitecture level. This thesis decomposes the problem

into two chapters. This chapter presents the PipeCheck approach and µhb graphs in

general, and it focuses on the enforcement responsibilities of the pipeline under the

assumption of an “idealized” memory system. Chapter 6 then analyzes in depth the

responsibilities of various coherence protocols in enforcing consistency, and it then

delivers a complete model of their combined enforcement.

The rest of this chapter is organized as follows. Section 5.2 describes a motivat-

ing example. Section 5.3 describes the PipeCheck microarchitecture-level approach.

Section 5.4 presents the verification approach. Our analysis methodology and tool

flow is described in Section 5.5. Sections 5.6 and 5.7 summarize overall results and

highlight important case studies, respectively. Lastly, Section 5.8 describes related

work, and Section 5.9 concludes. Finally, Chapter 6 extends PipeCheck analysis to

coherence protocols and to the coherence-consistency interface.

5.2 Motivating Example

Recall from Chapter 2 that axiomatic memory model analysis typically involves the

creation of a happens-before (hb) graph subject to certain axioms or constraints.

Happens-before graphs represent each program as a graph in which vertices represent

memory instructions and/or abstracted instruction visibility events in the program.

Edges between these vertices represent ordering relationships between the source and
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destination of the edge: an edge from an instruction s to another instruction d indi-

cates that s happens before d, in some formal sense defined by the model. Figure 5.1

presents an example using litmus test mp. The fact that analyzing the litmus test

(Figure 5.1a) according to the TSO specification (Figure 5.1b) results in a cyclic

graph (Figure 5.1c) indicates that the result is forbidden.

The specification of TSO in Figure 5.1b uses the following edge types which are

(informally) summarized below [Alg12]:

• “reads from” (rf): if d reads from s, then s must happen before d, from at

least some points of view. “rfe” (rf-external) represents rf orderings between

different cores.

• “write serialization” or “coherence order” (ws): s comes before d in the (as-

sumed) total ordering of all stores accessing a given location, from the point of

view of the memory hierarchy

• “from reads” or “reads before” (fr): s is a read that gets its value from a write

that comes before d in the set of ws edges. “fre” (fr-external) represents fr

orderings between different cores.

• “mfence” (mfence): s comes before d in program order, and there is an mfence

instruction in between them in program order

• “preserved program order” (ppo): s comes before d in program order, and either

s is a load or d is a store

• “program order, same location/address” (po-loc): s comes before d in program

order, and s and d access the same memory address

One goal of PipeCheck microarchitecture-level analysis is to reinterpret the ab-

stract architecture-level relationships listed above in the context of a particular mi-

croarchitecture. Some of these abstract edges will be made more concrete, in the
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Thread 0 Thread 1

(i1) [x]←1 (i3) r1←[y]

(i2) [y]←1 (i4) r2←[x]

Outcome r1=1, r2=0:

Forbidden under TSO

(a) Litmus Test Code

acyclic (rfe ∪ ws ∪ fre1 ∪ ppo ∪ mfence)

acyclic (rf ∪ ws ∪ fr ∪ po-loc)

(b) Axiomatic specification of the TSO memory model [Alg12]

(i1) (i2) (i3) (i4)
ppo rfe ppo

fre

(c) The cycle in the graph for the first axiom indicates that this execution is forbidden.

Figure 5.1: Load→load and store→store ordering litmus test iwp2.1/amd1/mp.

sense that they will become associated not just with instructions but also with specific

points in a pipeline. Others will be entirely replaced by multiple nodes and edges that

represent finer-grained relationships that correspond to specific microarchitecture-

level behavior, as discussed below.

5.2.1 Microarchitecture-Level Analysis

The analysis in Figure 5.1c says nothing about the behavior of any individual microar-

chitectural implementation of that architecture. On one hand, certain architecturally-

permitted behaviors may not be observable on a given microarchitecture. For ex-

ample, a sequentially consistent (SC) pipeline is a valid implementation of a TSO

architecture, although many executions that are legal under TSO will not be observ-

able in such a pipeline—the microarchitectural memory model is stricter than the

architecture requires. On the other hand, architecturally-forbidden behaviors may

be observable on a given microarchitecture—this would correspond to a bug in the

1Alglave et al. use fr in place of fre here, but the two are equivalent: fr-internal, fri=fr−fre,
must be in agreement with po by the second axiom, and therefore fri is contained in ppo.
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(a) Classic five stage RISC Pipeline plus a FIFO store buffer and an unordered memory
system. This pipeline example recurs throughout this chapter.

fr

popo

rf

FetchStage

DecodeStage

ExecuteStage

MemoryStage

WritebackStage

LeaveStoreBuffer

WriteToMemHierarchy

(i1) (i2) (i3) (i4)

Arrow Edge Type

Intra-Instruction
Intra-Location
Non-Local

Program Order
rf, fr, ws

Replaces ppo

(b) In this example, the preserved program order (ppo) edges are discarded as an
architecture-level assumption, and the model verifies that enforcement required by those
edges is instead enforced by some combination of µhb edges.

Figure 5.2: Microarchitecture-level analysis of mp on the given microarchitecture

implementation. In this case, the microarchitecture is erroneously weaker than the

architecture requires.

As a running example of a microarchitecture, we will use the classic RISC five-

stage pipeline, augmented with a store buffer, as shown in Figure 5.2a. The meanings

of the nodes and edges are described in detail in Section 5.3.2. For clarity, we as-

sume here that this microarchitecture has no cache; Chapter 6 will describe how to

model cache behavior in pipelines for which consistency and coherence are interde-

pendent. Furthermore, in this example we assume that the memory system and any

interconnects and networks-on-chip are unordered. This assumption is made in order

to highlight an important point: even for an in-order pipeline, the presence of an

unordered network and/or memory hierarchy can result in memory accesses being re-
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ordered from the point of view of other processors. As a result, PipeCheck must also

account for such behavior. Although we use a simple example here to build intuition,

we verify more complex processors, including OpenSPARC T2, later in the chapter.

Figure 5.2b shows the edges from Figure 5.1c as translated into the PipeCheck

model of the microarchitecture of Figure 5.2a. The four memory operations, (i1),

(i2), (i3), and (i4), are depicted from left to right, and various stages in the microar-

chitecture are shown from top to bottom. Specifically, each vertex corresponds not

just to a memory instruction, but also to a particular location within the pipeline or

memory system. Each column of vertices therefore corresponds to that instruction

progressing through the various locations in the microarchitecture. The various edge

types will be described in detail in later sections.

While ws edges are defined with respect to main memory, PipeCheck maps the

endpoints of rf and fr edges to the points in the pipeline at which the instructions

can be considered to have performed with respect to the core at the other endpoint.

As discussed in Section 2.1.1, a store from core i has traditionally been said to have

performed with respect to core j when a load of the same address issued by core j

returns the value written by the store (or by some subsequent store) [DSB86, SD87].

A load from core i has performed with respect to core j when a subsequent store from

core j to the same address cannot affect the value returned by the load. A store or

a load has performed globally when it has performed with respect to all cores. More

recent studies, however, have criticized this definition as being too hypothetical for

formal analysis [AFI+09, NSS+09].

From a microarchitectural point of view, Section 5.3.1 will therefore unambigu-

ously define “perform” in terms of locations in the pipeline. Continuing the example,

the rf edge from (i2.WriteToMemHierarchy) to (i3.MemoryStage) indicates that in-

struction (i2) must have performed with respect to core 1 (i.e., been written back
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from core 0 to the memory hierarchy) before instruction (i3) performs with respect

to core 0 (i.e., reads memory from the memory stage of the core 1 pipeline).

5.2.2 Deriving Correctness from Microarchitecture-Level

Axioms

A key benefit of our microarchitecture-level analysis is that it treats microarchitecture-

level correctness as a goal that can be derived from a set of simpler, easier-to-verify

self-contained axioms of a microarchitecture. Each microarchitecture-level axiom is

independent, and hence each can be independently verified as truly representative of

the underlying transistors. The goal of this approach is to create a situation in which

verification of the validity of each individual axiom with respect to the register transfer

level (RTL) specification of the microarchitecture is significantly more tractable than

verification of the microarchitecture as a whole would be.

Figure 5.2b presents one example of the axiom-based approach. In this figure, we

draw (in dashed green) orderings that are maintained at each location individually;

this calculation will be the focus of Section 5.3. In this example, with an in-order

pipeline, each pipeline stage independently maintains at its output the instruction

ordering it observes at its input. Taken together, these axioms result in the po order-

ings being maintained throughout the pipeline, with the notable exception of writes

sent to memory. The ordering of stores at the memory hierarchy is instead main-

tained by the store buffer via the diagonal edge from (i1.WriteToMemoryHierarchy)

to (i2.LeaveStoreBuffer).

The analysis in Figure 5.2b treats ppo edges as propositions rather than axioms:

it checks that the pipeline properly maintains the ppo edges, rather than simply

assuming their presence. Consider the ppo edges that were part of the cycle in

Figure 5.1c. While their presence was assumed in the architecture-level analysis,

PipeCheck does not assume them; it checks for them. The ppo edge from (i1) to (i2)
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is enforced by a sequence of three microarchitecture-level “happens before” edges, as

shown highlighted in gray in Figure 5.2b. The ppo edge from (i3) to (i4) is enforced by

a single microarchitecture-level edge. Together with the observed microarchitecture-

level rf and fr, the union of the highlighted edges forms the microarchitecture-level

equivalent of the cycle in Figure 5.1c. Thus, at least for this particular example, the

ppo edges are correctly maintained, and hence the pipeline correctly implements the

TSO restrictions on this litmus test. While this example covers only one test, later

sections will describe the process of fully verifying all possible orderings.

5.3 PipeCheck Microarchitecture-Level Analysis

A central observation of PipeCheck is that orderings between instructions are often

too complicated to be captured by a single architecture-level “happens before” edge.

A single pair of instructions may fetch in order, issue out of order, execute out of

order, commit in order, and perform globally out of order. Restricting “happens

before” edges to specify only orderings with respect to the memory hierarchy ignores

all of the other important memory orderings that take place within the pipeline

itself. PipeCheck therefore defines “microarchitectural happens before” (µhb) edges

to specify both an instruction and a particular location within the pipeline:

Definition 1 (Microarchitectural Happens-Before (µhb)). A µhb graph is a directed

graph (V,E) in which each vertex v ∈ V represents some microarchitecture-level event

taking place at some particular physical location, and in which each edge (s, d) ∈ E

represents a guarantee that event s happens before event d.

Most commonly, each microarchitecture-level event refers to some instruction i

passing through some particular physical location l (e.g., a particular pipeline stage)

in the microarchitecture. However, events can also refer to the sending or receiving

of a message, a change in the state of some element, or any other physical event. The
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requirement that each event be associated with some location is key to the transitivity

properties that we discuss in Section 5.3.3.

Throughout this thesis, we depict µhb graphs in a grid, as in Figure 5.2b, with

instructions along the x-axis and microarchitectural locations or events along the y-

axis. Not all instructions pass through all locations (e.g., loads do not occupy the

store buffer), and so some entries in the grid are left empty. Despite the grid depiction,

only relationships depicted by arrows provide any ordering guarantee.

As with any model checking approach, PipeCheck is able to verify a pipeline only

to the extent that the model provided is faithful to the orderings enforced by the un-

derlying implementation. If the user specifies an axiom which is not in fact guaranteed

by the microarchitecture, then PipeCheck may erroneously declare a pipeline to be

correct, even though it may actually be buggy. On the other hand, if the user omits an

ordering axiom which turns out to be valid, then PipeCheck may erroneously declare

a pipeline incorrect, even though it may actually work correctly. A key advantage

of the PipeCheck approach is that each PipeCheck axiom tends to be more localized

and/or finer-grained, meaning that verification of each axiom individually should be

significantly easier than verifying coarser, more abstract architecture-level edges. For

example, the next subsection will decompose the coarse-grained preserved program

order ppo edges into a series of finer-grained, per-pipeline-stage ordering guarantees.

Since each per-stage axiom is localized to a single module of the pipeline, it will be

easier to each per-stage property than to verify the correctness of the coarser ppo,

which involves many pipeline components.

5.3.1 Microarchitecture Definition

In PipeCheck, a microarchitecture is modeled as a set of microarchitecture-level ax-

ioms. These axioms specify various properties of and/or orderings enforced by the

given microarchitecture. For example, axioms may specify:
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• The legal path(s) per instruction type.

• A local ordering guarantee at each pipeline stage

• Performing locations within each path, and a specification of how instructions

interact with each other

• Edges specifying non-local happens-before relationships enforced via send-

ing/receiving of messages

• Any other edges which represent orderings that are somehow guaranteed to be

enforced

These terms are more carefully defined below.

During execution, as instructions flow through the pipeline, they pass through

the chosen locations along some well-defined path. A memory instruction may have

more than one legal path through a pipeline, depending on the type of instruction,

the state of the pipeline, and/or the state of the memory system during execution.

For example, a read may take a different path depending on whether it performs by

reading from the store buffer, from the cache via a cache hit, or from the cache after

a cache miss. Paths may overlap entirely, significantly, or not at all. A typical path

will involve a straight-line sequence of µhb edges enforcing the order in which each

instruction passes through pipeline stages: e.g., Fetch→Decode→ · · · →Commit.

Different pipelines will of course require varying sequences of path edges.

To more precisely define “in order” and “out of order” sections of a pipeline, we

can define a local reordering guarantee axiom for each pipeline stage. This specifies the

reorderings that the pipeline stage does or does not permit on instructions passing

through it. In one extreme, a FIFO local reordering guarantees that instructions

arriving at a particular pipeline stage in a certain order will leave that stage in the

same order. For example, a local reordering guarantee for a pipeline decode stage

107



may make the following guarantee:

If: (i1,Fetch)
µhb−−→ (i2,Fetch),

Then: (i1,Decode)
µhb−−→ (i2,Decode).

At the other extreme, a pipeline stage may not guarantee any such orderings, and

so there would be no local reordering guarantee axiom for such locations. For example,

an out-of-order issue stage or an unordered network may fall into this category. In

between the two extremes can be any other form of guarantee, such as “maintain

orderings between dependent instructions only” at an issue queue. Also, notably, the

local reordering performed by a reorder buffer stage may take the form of “restore

the ordering seen at the entrance to the rename stage”, for example. The specific

guarantees of each pipeline stage will vary from processor to processor.

Inter-instruction µhb edges specify how instructions interact with one another.

At a high level, these edges correspond to static relationships (e.g., address, control,

and/or data dependencies) and/or dynamic dependencies (e.g., reads-from, write se-

rialization, or from-reads). Each such edge cannot just be interpreted as a purely

inter-instruction relationship, however. As each µhb edge specifies a relationship be-

tween particular µhb nodes, each inter-instruction µhb relationship inherently spec-

ifies an ordering between two events at two specific physical locations. In this way,

µhb edges are more directly representative of the actual microarchitecture-level mech-

anisms used to enforce the specified ordering than more abstract architecture-level

edges such as preserved program order (ppo).

For example, consider a reads-from (rf) relationship. If a load reads from a

previous store on the same pipeline, then one µhb interpretation is to say that the

store must have entered but not yet left the store buffer at the time the load accesses
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it. This would imply two µhb edges:

(i1,EnterStoreBuffer)
µhb−−→ (i2,AccessMemory)

(i2,AccessMemory)
µhb−−→ (i1,ExitStoreBuffer),

where EnterStoreBuffer and AccessMemory both occur in the MemoryStage in our

running example. On the other hand, if a load reads from main memory, that store

must have already been written into the memory hierarchy, in which case the following

edge would be added:

(i1,WriteToMemHierarchy)
µhb−−→ (i2,AccessMemory).

The choice of source and destination nodes for each inter-instruction edge rep-

resents the locations at which each instruction can be said to have performed with

respect to the target core. As described in Section 5.2.1, previous work defined

the point at which an instruction performs as the point at which the effect of that

instruction becomes visible to (possibly hypothetical) memory accesses from other

cores [DSB86]. PipeCheck instead defines the point at which an instruction has

performed with respect to a given core in terms of that instruction reaching some

particular location within the microarchitecture. This maintains the intention of the

traditional definition given in Section 5.2.1 while removing its hypothetical nature.

5.3.2 PipeCheck Model Specification Language

PipeCheck microarchitecture models are described using a µhb graph-centric domain-

specific language (DSL) based on first-order logic2. Variables in the DSL represent

instructions or threads. As shown in Table 5.1, the logic includes a pre-defined set of

2The original PipeCheck paper used a more primitive specification format directly embedded
within the Coq specification language Gallina [LPM14, LPM15]. The DSL described in this thesis
is a standalone evolution of that original approach.
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Predicate Argument Types Notes

IsAnyRead uop
IsAnyWrite uop
IsAnyFence uop

AccessType string, uop
e.g., AccessType("RMW", i) or
AccessType("lwsync", f)

SameMicroop uop, uop
SameThread uop, uop

ProgramOrder uop, uop
ConsecutiveMicroops uop, uop

InThread threadID, uop
SameThreadID threadID, threadID

SameAddress uop, uop
SameData uop, uop

DataFromInitialState uop by address
DataFromFinalState uop by address

NodeExists node
NodesExist list node
EdgeExists edge
EdgesExist list edge

Table 5.1: Predicates used in the PipeCheck DSL

predicates ranging over variables of the types listed above. The predicates are used

to build first-order logic formulas which represent the axioms of the model. Two

predicates in particular—NodesExist and EdgesExist—are interpreted as adding

(or, if they are negated, forbidding the addition of) nodes and edges to a µhb graph,

respectively. In this way, the DSL encodes a primitive satisfiability modulo theories

(SMT) problem over the theory of directed acyclic graphs [BSST09]. The constraint

solver must do more than find a satisfying assignment for all of the literals; it must

find a solution such that the nodes and edges represented by the predicates chosen

form an acyclic µhb graph.

Figures 5.3 through 5.5 shows the PipeCheck definition of the classic RISC pipeline

of Figure 5.2a. First, Figure 5.3 defines a set of macros that are expanded within the

axioms. The macros serve as an organizational tool to keep the specification clean.

Figure 5.4 then defines a set of axioms specifying the behavior of load, store and

mfence instructions. Figure 5.5 adds three additional components. First, it adds
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% Legend:

% "/\" = AND

% "\/" = OR

% "~" = NOT

% "=>" = IMPLIES

% "%" = COMMENT

%

% Graph node = (instruction, location/event)

% - The notation (instruction, (0, location/event)) indicates that all cores

% share a single memory hierarchy, and that the shared memory hierarchy

% is associated with core 0 in PipeCheck

% Graph edge = (node, node, label)

%

% "c" is predefined to be the core ID

StageName 0 "Fetch".

StageName 1 "Decode".

StageName 2 "Execute".

StageName 3 "MemoryStage".

StageName 4 "Writeback".

StageName 5 "LeaveStoreBuffer".

StageName 6 "WriteToMemHierarchy".

DefineMacro "STBFwd":

exists microop "w", (

IsAnyWrite w /\ SameCore w i /\ SameAddress w i /\ SameData w i /\

EdgesExist [((w, MemoryStage), (i, MemoryStage ), "rf_stbuf");

((i, MemoryStage), (w, (0, WriteToMemHierarchy)), "rf_stbuf")]) /\

(~exists microop "w’",

IsAnyWrite w’ /\ SameAddress w w’ /\ SameCore w w’ /\

ProgramOrder w w’ /\ ProgramOrder w’ i).

DefineMacro "STBEmpty":

forall microop "w", (

(IsAnyWrite w /\ SameCore w i /\ SameAddress w i /\ ProgramOrder w i) =>

EdgeExists ((w, (0, WriteToMemHierarchy)), (i, MemoryStage), "STBEmpty")).

DefineMacro "ReadsFromMemory":

% Read from "w", and there must not exist any writes w’ to the same address

% between w and i

exists microop "w", (

IsAnyWrite w /\ SameAddress w i /\ SameData w i /\

EdgeExists ((w, (0, WriteToMemHierarchy)), (i, MemoryStage), "rf") /\

~(exists microop "w’",

SameAddress i w’ /\

EdgesExist [((w , (0, WriteToMemHierarchy)), (w’, (0, WriteToMemHierarchy)));

((w’, (0, WriteToMemHierarchy)), (i , MemoryStage ))])).

DefineMacro "BeforeOrAfterEveryWriteToSameAddr":

% Either before or after every write to the same physical address

forall microop "w", (

(IsAnyWrite w /\ SameAddress w i) =>

(EdgeExists ((w, (0, WriteToMemHierarchy)), (i, MemoryStage ), "ws*;rf") \/

EdgeExists ((i, MemoryStage ), (w, (0, WriteToMemHierarchy)), "fr"))).

Figure 5.3: PipeCheck model of the microarchitecture of Figure 5.2a, 1/3.
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Axiom "WriteSerialization":

forall microops "i1", forall microops "i2",

((~SameMicroop i1 i2) /\ IsAnyWrite i1 /\ IsAnyWrite i2 /\ SameAddress i1 i2) =>

(EdgeExists ((i1, (0, WriteToMemHierarchy)), (i2, (0, WriteToMemHierarchy)), "ws") \/

EdgeExists ((i2, (0, WriteToMemHierarchy)), (i1, (0, WriteToMemHierarchy)), "ws")).

Axiom "Reads":

forall microops "i",

(OnCore c i /\ IsAnyRead i) =>

EdgesExist [((i, Fetch ), (i, Decode ), "path");

((i, Decode ), (i, Execute ), "path");

((i, Execute ), (i, MemoryStage), "path");

((i, MemoryStage), (i, Writeback ), "path")]

/\

(

ExpandMacro STBFwd \/

(

ExpandMacro STBEmpty /\

(

ExpandMacro ReadsFromMemory /\

ExpandMacro BeforeOrAfterEveryWriteToSameAddr

)

)

).

Axiom "Writes":

forall microops "i",

OnCore c i =>

IsAnyWrite i =>

EdgesExist [((i, Fetch ), (i, Decode ), "path");

((i, Decode ), (i, Execute ), "path");

((i, Execute ), (i, MemoryStage ), "path");

((i, MemoryStage ), (i, Writeback ), "path");

((i, Writeback ), (i, LeaveStoreBuffer ), "path");

((i, LeaveStoreBuffer), (i, (0, WriteToMemHierarchy)), "path")]

/\ (

% Only one at a time allowed out from the store buffer

forall microop "w", (

(IsAnyWrite w /\ SameCore w i /\ ProgramOrder i w) =>

EdgesExist [((i, (0, WriteToMemHierarchy)), (w, LeaveStoreBuffer), "STBOne")])

).

Axiom "mfence":

forall microops "f",

OnCore c f =>

IsAnyFence f =>

EdgesExist [((f, Fetch ), (f, Decode ), "path");

((f, Decode ), (f, Execute ), "path");

((f, Execute ), (f, MemoryStage), "path");

((f, MemoryStage), (f, Writeback ), "path")]

/\ (

forall microops "w",

((IsAnyWrite w /\ SameCore w f /\ ProgramOrder w f) =>

EdgeExists ((w, (0, WriteToMemHierarchy)), (f, Execute), "mfence"))).

Figure 5.4: PipeCheck model of the microarchitecture of Figure 5.2a, 2/3.
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Axiom "RMW":

forall microop "w",

IsAnyWrite w => AccessType RMW w =>

(forall microops "i2", ProgramOrder w i2 => IsAnyRead i2 /\

EdgeExists ((w, (0, WriteToMemHierarchy)), (i2, MemoryStage), "rmw")) /\

(exists microop "r",

ConsecutiveMicroops r w /\ IsAnyRead r /\ AccessType RMW r /\

~exists microop "w’",

IsAnyWrite w’ /\ SameAddress w w’ /\

EdgesExist [((r, MemoryStage ), (w’, (0, WriteToMemHierarchy)));

((w’, (0, WriteToMemHierarchy)), (w , (0, WriteToMemHierarchy)))]).

Axiom "PO/Fetch":

forall microops "i1",

forall microops "i2",

(OnCore c i1 /\ OnCore c i2 /\ ProgramOrder i1 i2) =>

EdgeExists ((i1, Fetch), (i2, Fetch), "po").

Axiom "Decode_stage_is_in-order":

forall microops "i1",

forall microops "i2",

EdgeExists ((i1, Fetch), (i2, Fetch)) =>

NodesExist [(i1, Decode); (i2, Decode)] =>

EdgeExists ((i1, Decode), (i2, Decode), "ppo_uarch").

Axiom "Execute_stage_is_in-order":

forall microops "i1",

forall microops "i2",

EdgeExists ((i1, Decode), (i2, Decode)) =>

NodesExist [(i1, Execute); (i2, Execute)] =>

EdgeExists ((i1, Execute), (i2, Execute), "ppo_uarch").

Axiom "Memory_stage_is_in-order":

forall microops "i1",

forall microops "i2",

EdgeExists ((i1, Execute), (i2, Execute)) =>

NodesExist [(i1, MemoryStage); (i2, MemoryStage)] =>

EdgeExists ((i1, MemoryStage), (i2, MemoryStage), "ppo_uarch").

Axiom "Writeback_stage_is_in-order":

forall microops "i1",

forall microops "i2",

EdgeExists ((i1, MemoryStage), (i2, MemoryStage)) =>

NodesExist [(i1, Writeback); (i2, Writeback)] =>

EdgeExists ((i1, Writeback), (i2, Writeback), "ppo_uarch").

Axiom "STB_FIFO":

forall microops "i1",

forall microops "i2",

EdgeExists ((i1, Writeback), (i2, Writeback)) =>

NodesExist [(i1, LeaveStoreBuffer); (i2, LeaveStoreBuffer)] =>

EdgeExists ((i1, LeaveStoreBuffer), (i2, LeaveStoreBuffer), "ppo_uarch").

Figure 5.5: PipeCheck model of the microarchitecture of Figure 5.2a, 3/3.
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an axiom asserting that pairs of x86-TSO microops corresponding to an x86-TSO

macroop with a LOCK prefix asserted (i.e., atomic read-modify-write instructions)

are indeed atomic. Second, it asserts that two instructions related by ProgramOrder

pass through the fetch stage in that order. Lastly, it provides a set of local reordering

guarantees for each remaining stage in the pipeline, in this case representing the fact

that this pipeline is in-order.

Some of the edges specified in Figure 5.3 are directly analogous to the reads-from

(rf), from-reads (fr), and write serialization (ws) edges defined in Section 5.2. Each is

interpreted in terms of the performing location for each microop with respect to the

destination core. Some may even have multiple legal interpretations; for example,

rf may be interpreted in the sense of forwarding from the store buffer or in the

sense of reading from memory. In other cases, an architecture edge may not have an

analogous edge. Note how the architecture-level ppo is omitted entirely in favor of a

series of finer-grained ppo uarch edges. Lastly, there may be microarchitecture-level

edges which have no analogous architecture-level edges. For example, the “path” and

“STBEmpty” edges do not directly correspond to any of the edge types described in

Figure 5.1b.

While the complexity of a model depends on the complexity of the underlying

microarchitecture, the complexity of the model does not necessarily scale linearly

with the complexity of the microarchitecture. The model of Figures 5.3 to 5.5 is a

relatively simple pedagogical example. Nevertheless, complex real-world models may

be analyzed in a very similar manner; our PipeCheck model of the OpenSPARC T2

industry-strength processor is only just under twice as long as the model of our sim-

ple pedagogical pipeline. Sections 5.6 and 6.6.4 demonstrate how well the PipeCheck

approach scales, both in terms of the ability to describe complex real-world microar-

chitectures and the ability to verify their correctness very quickly.
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Furthermore, in keeping with standard tradeoffs in the field of model checking,

the contents and granularity of the model are somewhat subject to the discretion

of the user. Finer-grained models (i.e., ones with nodes modeling comparatively

more distinct locations or events) will generally be closer to the behaviors of the

register transfer level (RTL) definition of the microarchitecture. This will in turn

generally mean that verification of the validity of each axiom will be comparatively

easier. However, the graphs (and graph counts) will also likely be larger, and so

verification time will increase. On the other hand, coarser-grained models (with

fewer distinct locations/events) are likely faster to analyze, but the user then takes

on a larger burden in ensuring that the coarser axioms are still truly representative

of the underlying microarchitecture.

5.3.3 Transitivity of µhb Edges

Section 2.2.4 demonstrated that in many memory models, transitivity of inter-

instruction orderings is not always guaranteed. In other words, since there are in

general many competing points of view by which orderings can be defined, it is

possible that for instructions (i1), (i2), and (i3), (i1) may appear to happen before

(i2), (i2) may appear to happen before (i3), and (i3) may appear to happen before

(i1), all simultaneously. Likewise, Figure 2.8 demonstrated that edges in single-event

axiomatic models cannot in general be transitively composed, because single-event

models search for cycles only among edges with certain carefully-chosen labels, and

the transitive closure of two edges with different labels may not itself always have its

own well-defined label.

A major benefit of PipeCheck (and of many multi-event axiomatic mod-

els [MHMS+12]) is that all edges are in fact treated equally, regardless of their

label or their reason for being added to the graph. As described in Section 2.2.2,

in most single-event axiomatic models, the axioms search for cycles only among
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Thread 0 Thread 1

(i1) [x]←1 (i4) [y]←1

(i2) r1←[x] (i5) r3←[y]

(i3) r2←[y] (i6) r4←[x]

Outcome: 0:r1=1, 0:r2=0, 1:r3=1, 1:r4=0

Permitted under TSO

(a) Litmus test iwp2.4/amd9

(i1) (i2) (i3) (i4) (i5) (i6)
rfi ppo fre rfi ppo

fre

(b) Architecture-level analysis. Even though there is a cycle, there is no cycle involving
the subsets in Figure 5.1b, and so the outcome is permitted.

po po po po

rf rf

fr

fr

FetchStage

DecodeStage

ExecuteStage

MemoryStage

WritebackStage

LeaveStoreBuffer

WriteToMemoryHierarchy

(i1) (i2) (i3) (i4) (i5) (i6)

(c) Cyclic (and hence unobservable) µhb graph for an execution in which all reads skip
the store buffer and access memory

po po po po

rf rf

fr

fr

FetchStage

DecodeStage

ExecuteStage

MemoryStage

WritebackStage

LeaveStoreBuffer

WriteToMemoryHierarchy

(i1) (i2) (i3) (i4) (i5) (i6)

(d) Acyclic (and hence observable) µhb graph for an execution in which reads (i2) and
(i5) forward data from writes still in the store buffer

Figure 5.6: Analyzing litmus test iwp2.4/amd9.
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edges with certain specific labels, and therefore edges with different labels must be

treated differently. In PipeCheck, on the other hand, cycle checking is performed

using all edges in the graph regardless of their labeling. As a consequence, it is

always legal to take the transitive closure of µhb edges3. Microarchitecture-level

transitivity is respected because each µhb edge represents either a local ordering at

a particular microarchitectural location or a communicated message (i.e., a Lamport

clock [Lam78] “happens before”).

Note that microarchitecture-level transitivity does not imply architecture-level

transitivity, and that the presence of architecture-level cycles does not imply the

presence of microarchitecture-level cycles. Similarly, causality (Section 2.2.4) is also

not a consequence of µhb transitivity. This lack of implications above ensures that

PipeCheck can describe architecture-level memory models which are not themselves

transitive or causal (e.g., Power [IBM13]).

For example, Figure 5.6a shows a litmus test which demonstrates that the presence

of store buffering can be observed by software. This litmus test was first analyzed in

Section 2.2.1. Figure 5.6b shows that naive architecture-level analysis would produce

a cyclic graph. However, neither of the two specially-chosen hb graph subsets used

to define TSO in Figure 5.1b are cyclic, and hence the outcome remains permitted.

Figures 5.6c and 5.6d show two µhb graphs (i.e., two of the various legal graphs) for

the same litmus test. Figure 5.6c shows that a scenario in which all inter-instruction

communication takes place through memory results in a cyclic graph. However, Fig-

ure 5.6d shows that the scenario in which two of the loads read from the store buffer

is in fact acyclic and hence observable. This last case shows an example of how the

presence of an architecture-level cycle (Figure 5.6b) does not imply the presence of a

microarchitecture-level cycle (Figure 5.6d).

3For legibility, we do not draw the full transitive closure in our figures. Nevertheless, edges
resulting from the transitive closure of any other edges in the graph can always be inferred.
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This analysis highlights two facts. First, µhb graphs restore an intuitive one-to-one

correspondence between presence/absence of a cycle and non-observable/observable

outcomes, respectively. Although it may not matter to automated analysis algo-

rithms, this one-to-one correspondence makes it easier for humans to reason about

µhb graphs being drawn. Second, µhb graphs directly depict the manner in which

a particular outcome may be observed. In other words, it is clear from Figure 5.6d

that the execution is observable only when loads are allowed to forward data from the

store buffer. Although µhb graphs have significantly more nodes and edges than hb

graphs, the association of a particular physical location with each µhb node means

that each edge is described by the source and destination nodes alone.

5.3.4 Modeling Microarchitectural Optimizations

High-performance processors implement a number of microarchitecture-level opti-

mizations which are functionally invisible to the user (and to architecture-level mem-

ory models) but which are nevertheless very important to correct memory ordering

behavior in practice. Many such optimizations map very naturally into µhb graphs

and PipeCheck axioms. Others require somewhat more abstraction. We discuss some

particular cases below.

One potential point of difficulty comes about in specifying models for superscalar

pipelines and/or components such as caches with multiple ports. These can be most

directly modeled in PipeCheck by simply treating each component with multiple

lanes as distinct locations and by adding axioms to enforce any enforced cross-lane

orderings. However, using this strategy, the state space would grow quickly, as the

microarchitecture specification would need to explicitly model both/all possibilities,

leading to an exponential number of possibilities if analysis is done naively. Alter-

natively, one could assign an arbitrary priority between lanes sharing a location to

resolve ties, or one could even imagine µhb edges which indicate “happens before or
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at the same time as”. However, these deviate further from the basic approach of

PipeCheck, and so we do not consider them further.

Many microarchitectures use various forms of speculation to improve performance.

PipeCheck models this simply by not including squashed speculated events in µhb

graphs, as the consistency model imposes no requirements on squashed instructions.

If a squashed instruction is later replayed, then that replay will be included in the

graph (unless it is itself squashed). If a squashed instruction is not replayed (e.g.,

because it was only executed due to an incorrect speculation), then it simply does

not appear.

On the other hand, PipeCheck models can and do explicitly model correctly-

speculated behaviors, as the implementation of the speculation mechanism(s) does

in general affect the values returned by loads and hence is relevant to consistency

verification. For example, if a load returns the value written by a speculative store,

or if two load may speculatively execute out of order, then the PipeCheck model of

the microarchitecture in question must 1) capture the speculation explicitly, and 2)

ensure that the loads only commit if their returned values are legal according to the

memory model. This enforcement can take place in different ways. For example,

squash events may themselves imply µhb behavior, in the sense that the replayed

instruction will be guaranteed to restart after the event that caused the squash to

take place. Section 5.7 describes various examples in more detail. Out-of-order exe-

cution and correct speculation both map very naturally into PipeCheck. To enable

them, the axioms of a model must simply be relaxed to take into account the fact

that some events might happen earlier than they might otherwise occur under in-

order, non-speculative circumstances. Of course, relaxing the microarchitecture too

much will result in violations of the architecture-level requirements. Often, then, the

weakening of some axioms will require the addition of axiom(s) representing some

“fallback” mechanism which watches for illegal reorderings and handles them in some
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way. Section 5.7.1 provides a detailed example of how speculative load reordering is

modeled in PipeCheck.

5.4 Verification Flow

While the previous section described how PipeCheck models are specified, this section

describes how the correctness of each model is verified.

5.4.1 Litmus Test-Based Verification

Litmus tests are a standard and widely-used tool in verification of consistency

models [AMT14, HVML04, MHMS+12, OSS09a, SSA+11]. As described in

Section 2.1.4, litmus tests are (usually very short) programs designed to test

particular rules or subcases for a consistency model. Due to the inherent com-

plexity of defining even simple consistency models and/or due to incomplete or

even incorrect documentation, even programs as short as five or six instructions

(e.g., amd6/iriw [BA08], n4/n5/n6 [OSS09a], A-cumulativity tests [AFI+09],

coRSDWI/mp+dmb+fri-rfi-ctrlisb [AMT14]) can be very difficult to analyze prop-

erly. Nevertheless, the ability to execute litmus tests on real hardware allows them

to serve as a valuable means for checking that a model is sound with respect to an

actual implementation, and/or vice-versa.

At a high-level, verification proceeds according to the flow diagram of Figure 5.7.

The PipeCheck tool itself takes in two inputs. First, it takes a microarchitecture

model specification. These specifications are written in the domain-specific language

of Section 5.3.2. Second, PipeCheck takes in a litmus test written using a pre-existing

and standardized syntax [AMSS11]. Given these inputs, the automated constraint

solver of Section 5.4.2 is used to determine whether the specification admits an acyclic
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Litmus test

µarch. spec.

Arch. spec.

FindAcyclic-
Graph

(Alg. 5.1)

herd [AMSS10]

Observable
OR

Not Observable

Permitted
OR

Forbidden

Compare
(Table 5.2)

Matches
arch. spec.

OR
Stricter than
necessary

OR
Weaker than

expected (BUG)

PipeCheck

Figure 5.7: PipeCheck block diagram and toolflow. Pre-existing components are
shown in white; shaded components were created for PipeCheck.

µhb graph for the litmus test. If so, the outcome is observable on the given microar-

chitecture model. If not, the outcome is not observable.

The next step depends on whether there exists an architecture-level specification

against which the above outcome can be compared. Ideally, we would compare the

above result to a specification of the expected architecture-level behavior to ensure

that no forbidden outcomes are observable. However, an unfortunate reality of mod-

ern hardware development is that formal (or even informal) architecture-level MCM

specifications simply may not exist. Accelerators in general, and GPUs in particular,

serve as currently-prominent examples: GPU hardware specifications from industry

are often weak and informal-to-nonexistent [AMD12, HSA13, NVI13b, NVI15]. Aca-

demic research has demonstrated that these specifications are both fundamentally

flawed and often implemented incorrectly, meaning that they are clearly unsuitable

as an absolute statement of correctness [ABD+15]. Likewise, modern GPU toolchains

differ from CPU toolchains in that the GPU flow uses just-in-time (JIT) compilation

from an software intermediate representation to a microarchitecture-specific instruc-

tion set, meaning that the traditional notion of an architecture-level abstraction layer
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Microarchitecturally

Architecturally Observable Not Observable

Permitted OK
OK (but stricter than

necessary)

Forbidden
Bug in model and/or

microarchitecture
OK

Table 5.2: Approach to verifying a microarchitecture-level model against an
architecture-level specification

does not even exist [HSA13, NVI13b]. Because of this, we consider two slightly dis-

tinct workflows, each of which is described in turn below.

When an Architecture-Level MCM Specification is Available. When

possible, PipeCheck compares the expected behavior (according to the architecture-

level model) to the observed behavior (according to the microarchitecture-level

model). To determine the expected behavior, PipeCheck currently uses the herd

tool, a pre-existing architecture-level analysis tool [AMT14], to determine whether

the outcome proposed by the litmus test is permitted or forbidden on that ar-

chitecture. The herd tool takes in the same litmus test and an architecture-level

memory model specification written in the cats language, which has itself been used

to describe a wide variety of memory models. However, PipeCheck and herd are

decoupled, so other tools or models could easily be used as well.

The set of possible analysis outcomes is summarized in Table 5.2. The two most

common outcomes are those in which the expected and observed behaviors corre-

spond. Outcomes which are architecturally permitted and microarchitecturally ob-

servable are correct, as are outcomes which are architecturally forbidden and microar-

chitecturally unobservable.

An architecturally-permitted but microarchitecturally-unobservable outcome is

not in itself an incorrect result. Such a situation may simply mean that the pipeline

is stronger than strictly necessary. It may imply a performance penalty, given that

stricter consistency models are correlated with lower performance, but the situation
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generally is legal. It may also imply that one of the axioms in the model is stricter

than what the underlying microarchitecture actually permits, which in turn implies

that the overly-strong constraint should be removed from the model. In any case, care

should be taken to ensure that the microarchitecture ensures at least some outcomes

(e.g., at least sequentially consistent ones), as it is possible to (usually unintention-

ally) write a model which simply forbids all outcomes. A microarchitecture model

which forbids all outcomes should not be considered correct.

An architecturally-forbidden but microarchitecturally-observable outcome does in-

dicate a problem. The problem may be that the model is underconstrained: that some

ordering enforced by the microarchitecture is not currently reflected in the model. In

other cases, if the model is faithful, then the unexpected outcome may actually cor-

respond to a consistency bug in the microarchitecture. In either case, in contrast to

some constraint solvers, PipeCheck returns the explicit µhb graph corresponding to

the unexpected outcome. An architect can then study this graph to determine where

the fault lies and how best to correct it.

When an Architecture-Level MCM Specification is Not Available. Al-

though a specification of expected behavior may not available, it is still possible to

simply analyze the behavior of a microarchitecture independently of any correctness

specification. A microarchitecture model, once properly refined, may even serve as

the inspiration for a later architecture-level specification. In this sense, our hope is

that PipeCheck is used both as an exploration tool and as a verification tool.

It is also possible to use PipeCheck to reason about correctness with respect to a

level of abstraction even higher than the architecture level. For example, one might

reason about the correctness of a particular compiler/microarchitecture combination

with respect to a given software-level specification. Previous work has proven the

correctness of mappings and/or compilers in the past [BMO+12, BSDA14, Ler09,

PVJ15]. However, in such cases, the framework must explicitly address the way in
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Algorithm 5.1 PipeCheck Constraint Solver
Given: µarch spec fFOL, as defined using the DSL of Section 5.3.2
Given: litmus test t

// Eliminate quantifiers by explicitly enumerating over the (finite) domain(s) in t
fprop ← EliminateQuantifiers(fFOL, t)

// Convert fprop into the form used by the solver
fprop,nnf ← ConvertToNegationNormalForm(fprop)

// Algorithm 5.2, starting with an empty graph
return FindAcyclicGraph(∅, fprop,nnf)

which higher-level constructs are mapped or compiled onto microarchitecture-level

primitives. As such, the consideration of such mappings is outside of the scope of this

thesis.

5.4.2 Automated Constraint Solver Algorithm

The PipeCheck constraint solver is inspired by the Davis-Putnam-Logemann-

Loveland (DPLL) algorithm that forms the core of many existing boolean satisfiability

(SAT) solvers [DLL62, MMZ+01]. Pseudocode for the solver is given in Algorithms 5.1

and 5.2. As Figure 5.7 and Algorithm 5.1 show, the solver takes in two inputs: the

microarchitecture specification (as specified using the DSL of Section 5.3.2), and a

litmus test specified using the pre-existing litmus format [AMS+12]. The solver is

divided into two phases: a preprocessing step and the core solver. We address each

below in turn.

Solver Algorithm: Preprocessing Phase. The goal of the preprocessing phase

is to parse the two inputs (the µarch spec and the litmus test) into a form that is

suitable for automated satisfiability checking. The preprocessing phase is divided into

the two steps discussed below.

First, because the formula is being applied to a particular litmus test, the domains

over which variables in the formula may be quantified—microops and threads—are
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concrete and finite. Therefore, to ease the job of the constraint solver, the quanti-

fiers are eliminated: each forall quantifier becomes a conjunction over its domain,

and each exists quantifier becomes a disjunction over its domain. Likewise, all

predicates except NodesExist and EdgesExist are evaluated to either true or false.

The NodesExist and EdgesExist predicates become simple propositions. The above

process produces a propositional formula representing the constraints of the microar-

chitecture model as applied the litmus test in question.

Second, the propositional formula generated above is converted into negation nor-

mal form (NNF), a form in which the NOT operator may only be applied to individual

propositions (as opposed to clauses) and in which only AND and OR operators are al-

lowed as connectives. As a design choice, the formula is not converted into conjunctive

normal form (CNF) as would be required by standard SAT solvers. Our implementa-

tion (Section 5.4.3) provides the ability at any step to view the partially-completed

graph and the tree of remaining constraints. As such, we find that maintaining the

structure in the form originally specified by the user is a significant help during the

debugging process.

Once the above two steps are completed, the NNF formula is passed (along with

the empty graph) as the arguments to Algorithm 5.2 below.

Solver Algorithm: FindAcyclicGraph. At a high level, the algorithm follows

a recursive backtracking approach. Candidate solutions (i.e., acyclic graphs) are

built up incrementally by adding new edges to the graph. At various points in the

search process, there may be two (or more) possible choices to take, and the solver will

consider each choice one by one. If at any point the graph under construction becomes

cyclic and/or the set of remaining constraints becomes unsatisfiable, all remaining

solutions derived from that point are discarded, and the algorithm backtracks to a

previous point to explore a different part of the solution space.
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Algorithm 5.2 FindAcyclicGraph
Given: µhb graph g
Given: formula f of remaining constraints, in negation normal form

repeat
// Prune terms in f that are redundant/invalid given g
f ← PropagateConstraints(f , g)

// Find guaranteed literals, i.e., nodes or edges guaranteed to be in every possible
// solution derived from the current state
l← GuaranteedLiterals(f)
g ← g ∪ l

// If g has become cyclic, prune the rest of this subtree
if Cyclic(g) then

return (NoSolutionFound,∅)

// If new guaranteed literals were found, iterate to keep pruning the search space
until l = ∅

if AllConstraintsSatisfied(f) then
// The iteration has converged, and g is acyclic (because otherwise it would have
// been pruned above). Hence we have found a valid acyclic graph.
return (Observable, g)

else if RemainingConstraintsUnsatisfiable(f) then
// Backtrack and try a different candidate
return (NoSolutionFound,∅)

else
// Find a list of “branching edges”
for all b ∈ FindBranchingEdges(f) do

// Recurse using each branching edge candidate
(result, g′) = FindAcyclicGraph(g ∪ b, f)

// If a valid scenario was found during recursion, stop searching and return it
if result = Observable then

return (Observable, g′)
else

// Otherwise, backtrack to the current state and try another candidate
continue

// If none of the candidates returned a valid acyclic graph, then give up on this
// subtree and backtrack one step further
return (NoSolutionFound,∅)
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Each iteration is composed of two steps: an inner simplification loop and a re-

cursive subcase exploration step. The simplification step relies on the concept of a

guaranteed literal—a literal (a proposition or its negation) which must be true given

its position within the formula. Guaranteed literals are analogous to unit clauses,

or clauses containing only one literal, in CNF formulas: since every clause in a CNF

formula must hold true, a literal in a CNF unit clause must itself hold true. The value

of guaranteed literals (and of unit clauses) is that they allow for unit propagation, a

rule for simplifying a propositional formula by simplifying other occurrences of that

literal in the formula. Under unit propagation, every non-negated occurrence of the

same literal is can be replaced with boolean true, and every negated occurrence of

the same literal is unsatisfiable and can be replaced by boolean false. In PipeCheck,

multiple instantiations of the same edge or node can likewise be replaced by boolean

true, even when the edges may have different labels, as discussed in Section 5.3.3.

The µhb graph-centric focus of PipeCheck introduces two key distinctions from

standard unit propagation/boolean constraint propagation. First, because PipeCheck

formulas are not in CNF, literals in NNF unit clauses are not inherently guaranteed

to be true, as they may be part of a broader disjunction. Nevertheless, this makes

no difference in practice, as in either case literals are considered to be guaranteed if

and only if they are reachable only through conjunctions. Second, the assignment

of a truth value to a given literal (i.e., edge or node) may have a direct impact on

the satisfiability of other literals. For example, the addition of an edge to the graph

may cause other literals to become unsatisfiable, as the addition of the second edge

may (in conjunction with the first edge) complete a cycle. Edge literals and node

literals may affect each other in similar ways. In this sense, PipeCheck behaves as a

primitive SMT solver for the theory of directed acyclic graphs, rather than as a pure

SAT solver [BSST09].
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As noted by existing SAT solvers, constraint propagation often has a large and

cascading effect, and in practice most of the runtime of the solver may be spent in the

constraint propagation phase [MMZ+01]. PipeCheck models tend to be no different

in this regard; most models tend to have many guaranteed nodes and edges. For ex-

ample, each instruction in a program will always have a fetch to decode edge, decode

to execute edge, and so on, and so these edges will be marked as guaranteed from the

beginning. Furthermore, the sequence of per-pipeline stage preserved program order

axioms found in many pipeline definitions (e.g., as in Figure 5.5) will become guar-

anteed one iteration at a time. Often, in PipeCheck, this process runs to completion

even without requiring any of the recursive calls described below.

Once the constraint propagation process has converged, there are three possibili-

ties. First, if the remaining constraints reduce to boolean true, then a valid acyclic

graph has been found, and the algorithm completes. Second, if the remaining con-

straints reduce to boolean false, then no solution derived from this point is valid, so

the algorithm discards the current state and backtracks to the previous step. Third,

if the remaining constraints reduce neither to boolean true nor to boolean false, then

the constraints represent the set of possible solutions derived from the current state.

In the latter case, the algorithm recurses to search for a solution among the set of

remaining possibilities.

The recursion into subcases proceeds as follows. First, the algorithm searches

among the remaining constraints for a CNF clause: a set of unassigned literals whose

disjunction holds true according to the remaining constraints, as a clause in a CNF

formula would. In other words, a CNF clause is a set of edges such that at least

one of the edges in the set must be present in all solutions derived from the current

point. For each candidate literal in the CNF clause, the algorithm recurses, passing

the remaining constraints and the graph with the candidate edge(s) added. Each

candidate is considered in turn, until a solution is found (at which point there is no
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need to continue searching) or until all possibilities have been exhausted (in which case

the algorithm backtracks further). If the algorithm finds a solution at any point during

its search, it returns Observable, along with the graph that satisfies the constraints.

If the algorithm backtracks all the way to the beginning without finding a solution,

then the constraints are unsatisfiable for the given litmus test, and the algorithm

returns NotObservable.

5.4.3 Software Implementation

To aid in exploration and verification of microarchitecture-level memory models, we

implemented the PipeCheck flow of Figure 5.7 as an automated toolchain. We use a

mixture of Coq, OCaml, and external tools. The core analysis routines (constraint

checking, cycle detection, iteration until convergence, etc.) are written in Coq, an

interactive theorem prover [The04]. The use of Coq allows propositions about correct-

ness to be formally stated and proven, and it provides an extremely strong guarantee

of reliability. It also allows our framework to be integrated with existing open-source

architecture-level frameworks also written in Coq [AMSS10, Alg12]. At this time,

however, as a result, we have not completed any formal proofs; see Section 5.4.6.

The interface to PipeCheck is written in OCaml. The core analysis routines are

automatically extracted from their purely-functional Coq specifications into a set

of OCaml functions using built-in features of the Coq framework. We then write

an external interface to these analysis routines using native OCaml. This includes

parsers for litmus tests and microarchitecture models (such as the ones presented in

Figures 5.3 through 5.5). The entire framework is then compiled into a standalone

tool, resulting in the flow depicted in Figure 5.7.
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5.4.4 Runtime

We chose to write the analysis routines in Coq to allow the analysis to be formally

specified and analyzed. However, this does come with a cost in terms of performance.

Coq routines and data structures are generally optimized to be amenable to formal

analysis rather to be high-performance, and so the runtimes of many operations are

both absolutely and asymptotically slower than might be possible when coding di-

rectly in OCaml (or any other language). Nevertheless, even with the overheads of

naive Coq functions and data structures and of naive constraint solving, the graph

counts and graph sizes remain small enough to be tractable, and so the analysis re-

mains very practical. We provide quantitative evidence of this in Section 5.6. As a

result, we consider the current balance between formalism and practical usability to

be an important feature of PipeCheck.

The number of graphs each algorithm enumerates varies with the number of in-

structions in the test and the size of each pipeline. While potentially exponential in

the worst case, the absolute numbers for each quantity are very small: long pipelines

contain just dozens of stages, and the longest litmus test of the suite we survey

contains eight instructions. Furthermore, the algorithm can (and does) terminate

early if it finds an observable outcome. Finally, the graph checking can be trivially

parallelized. This ensures that PipeCheck remains fast in practice.

5.4.5 Caveats

As with any formal verification process, the verification outcome is only legal to

the extent that the model faithfully represents the underlying microarchitecture. In

particular, a forbidden but observed outcome indicates either a pipeline bug or an

incomplete specification. If the model is missing an axiom representing some ordering

that is in fact enforced by the hardware, then the axiom can be added and the verifi-

cation process can be retried. On the other hand, if all behaviors actually enforced by
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the pipeline are represented by some axioms in the model, then a verification failure

does in fact represent an ordering bug in the underlying microarchitecture. In this

case, the µhb edge which is determined to be missing can be enforced by modifying

the microarchitecture accordingly; see Section 5.7.2 for an example.

5.4.6 Future Work: Formal Equivalence/Implication

One drawback of the litmus test-based approach in general is that it can suffer from

a lack of coverage. Although test suites are large, they are not guaranteed to test

every possible scenario, and so it is possible that some bug in a microarchitecture

could go undetected due to a lack of coverage. This situation in fact occurred more

than once during the development of PipeCheck; we have continued to add new

microarchitecturally-inspired litmus tests throughout the development process. Re-

searchers have studied the cost of enumerating a fully-comprehensive suite of litmus

tests for a given architecture. However, even after careful elimination of redundancies

that lead to two-orders-of-magnitude reductions in test counts, the numbers still grow

into the tens of thousands and beyond [MHAM10, MHAM11].

A compelling alternative to using litmus tests would be to formally prove that

a microarchitecture is sound with respect to the given architectural memory model.

The theorem of correctness would state that any program outcome observable on the

microarchitecture is allowed by the architecture specification:

∀(p ∈ programs),

∃gµhb, IsValidScenarioµarch(p, gµhb) =⇒

∃e, IsValidExecutionarch(p, e)

Or, contrapositively, any outcome forbidden by the architecture should be for-

bidden by the microarchitecture as well. The caveat of Table 5.2 would still hold:
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Pipeline Lines of Code Notes

RISC 5-Stage (w/o SB) 136 In-order pipe, unordered memory
RISC 5-Stage (Figs. 5.3-5.5) 167 In-order pipe, unordered memory

gem5 O3 190 Simulator, OoO pipe, unordered memory

OpenSPARC T2 233
Industry-strength, in-order pipe,

mostly unordered memory

Table 5.3: Microarchitectures analyzed in this chapter.

permitted outcomes need not be observable on the microarchitecture. For example,

to prove a microarchitecture correct with respect to the TSO memory model, one

might use the formalization of Alglave et al. [Alg12, AMT14]:

∀(p ∈ programs),

∃gµhb, IsValidScenarioµarch(p, gµhb) =⇒

∃rf,∃ws,

acyclic(ppo(p) ∪mfence(p) ∪ rf ∪ ws ∪ fr(rf,ws))∧

acyclic(poloc(p) ∪ rf ∪ ws ∪ fr(rf,ws))

For this thesis, we chose to focus on building a practical tool with broad applica-

bility, and this goal contrasted to the often years-long process of properly formalizing

hardware, microarchitecture, and mappings between them. We therefore leave full

formalization and formal proofs to future work. See Section 7.1.2 for details.

5.5 Experimental Methodology

To demonstrate the effectiveness of PipeCheck, this chapter focuses on verification

of processors implementing the TSO consistency model. TSO imposes non-trivial

preserved program order requirements on all memory operations, making verification

of TSO a particularly interesting target. Furthermore, its widespread use on x86

132



and other platforms make its verification very important. However, PipeCheck can

also be used to model implementations of Power, ARM, or other architectures which

have weaker PPO requirements and use fences or dependencies as synchronization

primitives.

Table 5.3 summarizes the four microarchitectures we survey in our results. The

first two are the five-stage RISC pipeline of Figure 5.2a both without and with a

store buffer. The former is effectively a sequentially-consistent core, meaning that

some of the litmus test outcomes permitted under TSO should not be observable.

These two microarchitectures reflect the size of pipelines that might be used in class-

rooms or as small embedded cores. The third is the gem5 O3 simulated pipeline

(v10013) [BBB+11]. This represents an average-sized core and demonstrates how

simulated cores are also amenable to analysis. Finally, we describe the OpenSPARC

T2 pipeline, representing a well-documented industry microarchitecture [Sun07].

We analyze a comprehensive set of TSO litmus tests from Intel and AMD manuals,

academic studies, random test generators, and custom additions [AMD13, AMS+12,

Int07, OSS09b]. Each litmus test was analyzed on a four core version of each pipeline,

as none of our tests required more than four cores. We execute the extracted OCaml

code and collect timing results using an Intel Xeon E5-2667 v3 server processor.

5.6 Results Across Litmus Tests

Table 5.4 shows the results of running the litmus test suite on each pipeline. Although

we run the whole suite, only a core subset of the results are reproduced in the table; the

rest of the suite behaves similarly. In this table, individual litmus tests are depicted

as rows. For each row, the table shows whether TSO forbids or permits the outcome

proposed by the test, and then shows its observability on the microarchitectures

considered.
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Litmus test Expected Observed
TSO RISC RISC gem5 gem5 Open-

(no SB) (w/ SB) O3 (fixed) SPARC

iwp2.1/amd1/mp Forbid = = O2 = =
iwp2.2/amd2/lb Forbid = = = = =
iwp2.3a/amd4/sb Permit N1 = = = =

iwp2.3b Permit = = = = =
iwp2.4/amd9 Permit N1 = = = =

iwp2.5/amd8/wrc Forbid = = O2 = =
iwp2.6 Forbid = = = = =
amd3 Permit N1 = = = =

amd6/iriw Forbid = = O2 = =
n1 Permit N1 = = = =
n2 Forbid = = = = =
n4 Forbid = = = = =
n5 Forbid = = = = =
n6 Permit = = = = =
n7 Permit N1 = = = =
rwc Permit N1 = = = =

1Implementation more restrictive than TSO requires.
2Indicates the presence of a bug. See Section 5.7.2.

Table 5.4: Summary of litmus test results. “=”: Matches expected TSO outcome.
“O”: Observable. “N”: Not observable.

In almost all cases, the microarchitecturally-observable behaviors correspond with

the architecturally-specified behaviors. However, there are exceptions. For the RISC

pipeline without a store buffer, six of the proposed litmus test outcomes are permitted

under TSO but forbidden under sequential consistency. They should therefore not be

observable on the simplest pipeline, as it was designed to execute in a sequentially

consistent manner. The six rows with “N” markers confirm the hypothesis.

On the other hand, three of the test results demonstrate the presence of a bug in

the original specification of the gem5 O3 pipeline. This bug is discussed in detail as a

case study in Section 5.7.2. For now, we simply observe that a problem is immediately

apparent from the fact that three of the tests fail. As discussed in Section 5.4.1,

the finding could indicate either that the model was under-constrained with respect

to the underlying hardware or that the underlying hardware was itself buggy. As

Section 5.7.2 demonstrates, the latter turned out to be the case. For comparison, we

present results for the corrected version of the pipeline as well.
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Figure 5.8 shows the time taken to complete the verification process for each

pipeline. This figure includes the entire suite of litmus tests. Notably, the entire suite

runs in less than a second for each pipeline. The fast runtimes allow PipeCheck to

be used in an interactive manner, thereby greatly aiding in the debugging process.

They also demonstrate that even though the code is written in Coq and optimized

for verifiability rather than performance, the automated PipeCheck analysis remains

very practical.

The performance of the PipeCheck solver progressed over time. Published early

prototypes of the PipeCheck tool used naive, exhaustive, brute force exploration of

the space. This remained scalable for early cases; runtimes were originally on the

order of seconds to minutes [LPM14, LPM15]. However, as we scaled PipeCheck

to run larger and/or more complicated cases (as in Chapter 6 and Section 7.1.1), we

were motivated to improve the algorithm (and the generality) to improve the runtime.

This resulted in a performance improvement of roughly two orders of magnitude.

Likewise, the generality of the microarchitecture specification format also im-

proved greatly over time. The first version of PipeCheck was not flexible enough to

handle atomic read-modify-write operations or fences of different varieties [LPM14,

LPM15]. As a result, many of the tests shown in Figure 5.8 could not be run under the

original model. Fortunately, the development of the PipeCheck DSL of Section 5.3.2

since the original publication allows for more flexible models, and we are now able to

run 100% of the test suite.

5.7 Case Studies

Having defined the PipeCheck methodology, we now demonstrate its use by high-

lighting cases of particular interest.
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(a) Speculative load reordering: although ppoarch is not enforced, a legal replacement pposlr
is enforced, and it completes the cycle.

5.7.1 Speculative Load Reordering

Many microarchitectures speculatively reorder load instructions for performance rea-

sons [AMD13, GGH91, Int13a, SPA94b]. The key principle is that two loads l1 and

l2 in program order can be speculatively reordered (i.e., l2 can execute before l1) as

long as the value read speculatively by l2 is the same as it would have been had l2

in fact performed after l1 (i.e., non-speculatively). One implementation, as used by

the gem5 O3 pipeline [BBB+11] that we analyze in this thesis, is to hook into the

cache coherence protocol. Namely, if a private cache line has not been overwritten

or invalidated (due to cache replacement or an external invalidate request) since an

earlier read of that line, then the core can safely assert that a subsequent read of that

line would return the same value. On the other hand, if the cache line is invalidated,

the core is conservative and assumes that the invalidate indicates a failed speculation.

This implementation of speculative load reordering can be modeled in PipeCheck

by including cache line invalidation as a “location” within the model. Figure 5.9a
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shows an example of PipeCheck’s use of this as applied to the gem5 O3 pipeline

model and to the depicted litmus test. Extra vertices have been added to represent

the invalidations of the cache lines that (i3) and (i4) read from, and the observed edges

in the graph have been adjusted to account for these new vertices. In particular, the

cache line that (i4) reads from must have been invalidated before (i1) wrote to memory

to observe the proposed result.

PipeCheck uses this µhb graph to analyze the correctness of speculative load

reordering. This is an out-of-order pipeline, so there is no sequence of edges guaran-

teeing ppoarch as there was in Figure 5.2b. However, although a µhb version of this

edge would be sufficient, speculative load reordering proposes that it is not strictly

necessary. Should the processor guarantee that the pposlr edge is enforced instead,

this would be sufficient to prevent the forbidden outcome from being observed regard-

less of the presence of the ppoarch edge. As a result, the core can safely realize the

performance benefits of reordering (i3) and (i4) as long as it enforces either ppoarch

or pposlr.

5.7.2 Consistency Bug in gem5 O3 Pipeline

For the gem5 O3 pipeline, our PipeCheck results indicated that load→load ppo or-

dering was not guaranteed, and that four of the litmus tests (including mp, shown

in Figure 5.10a) failed validation. These results could mean either that we omitted

a critical set of non-local edges in the PipeCheck definition of the pipeline, or that

PipeCheck had in fact found a bug in the implementation. To analyze further, we

wrote a microbenchmark to execute mp in a tight loop. With this, the software was

in fact able to observe the forbidden result, clearly indicating that PipeCheck had

found a bug.
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po po
FetchStage

DecodeStage

RenameStage

IssueStage

ExecuteStage

CacheLine
Invalidated

WritebackStage

CommitStage

LeaveStoreBuffer

WriteToMemHierarchy

(i1) (i2) (i3) (i4)

(a) Pipeline bug shown via the mp litmus test. The lack of a cycle indicates that the behavior
is (erroneously) observable.

While difficult to find without PipeCheck, the load→load ordering bug is easily

correctable in this case4. The pipeline already does correctly implement load→load

ordering in some cases: it squashes and restarts the second of the two reordered loads if

the core sees an invalidate (as described in Section 5.7.1) to the line read by the second

load, but only if the accesses are to the same address. Simply removing the second

condition is sufficient to restore correctness. Fortunately, as actual ordering violations

are relatively rare, we believe this fix results in only minimal performance changes in

practice. This case study demonstrates the ability of PipeCheck to automatically find

and identify very specific pipeline bugs and/or missing guarantees in the specification

of the pipeline.
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po po

baseline

ppo

WeeFence

FetchStage

DecodeStage

RenameStage

IssueStage

ExecuteStage

CacheLine
Invalidated

WritebackStage

CommitStage

LeaveStoreBuffer

WriteToMemHierarchy

(i1) (i2) (i3)

(a) WeeFence [DMT13] eliminates the slow “baseline” dependency while maintaining the
necessary ordering.

5.7.3 WeeFence

Our third case study uses PipeCheck to verify the correctness of WeeFence [DMT13].

WeeFence proposes a microarchitectural optimization to make enforcement of

Store→mfence→load orderings cheap under TSO. Specifically, they propose allowing

post-fence loads to perform and retire prior to the fence itself, thereby reducing

latency. We check that these continue to correctly enforce TSO in a particular

implementation.

Figure 5.11a demonstrates the use of PipeCheck to validate the correctness of

the WeeFence approach. Since their technique is not specific to a particular im-

plementation, we apply it to the gem5 O3 pipeline model, as it allows out-of-order

execution. In their baseline microarchitecture, the load may speculatively perform

before the fence has retired, similarly to Section 5.7.1, but it may not retire until

after the fence has retired. This in turn must happen after the store has written back

4The bug was independently fixed in revision 10149.
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to memory. In other words, ordering is enforced from (i1.WriteToMemHierarchy)

to (i2.CommitStage) to (i3.CacheLineInvalidate), where the last segment is enforced

by squashing (i3) if necessary. They then propose the optimization of buffering or

bouncing invalidates rather than monitoring for them, which in turn allows the read

to safely retire non-speculatively, even before the store has written back to memory.

This approach also enforces (i1.WriteToMemHierarchy) µhb−−→(i3.CacheLineInvalidate),

but without the slow intermediate step of (i2.CommitStage), thereby saving latency.

This analysis demonstrates how PipeCheck can be used to verify and then to demon-

strate the correctness of a microarchitectural optimization proposal.

5.8 Related Work

Shasha and Snir [SS88] and Collier [Col92] provided early frameworks to analyze pro-

grams running on machines with memory models weaker than sequential consistency.

Graph-based axiomatic memory models are now widely used in academia and industry

to model various architeture-level memory models of theoretical and practical inter-

est [AAS03, Dig92, Alg12, AFI+09, AMSS10, AM06, Int13b, SPA94b, MHMS+12,

YGLS03]). Most of these approaches do not model the details of any one particular

pipeline; in fact, most intentionally abstract away microarchitecture-specific details

in favor of presenting an implementation-independent model suitable for use at the

architecture level. That being said, some of these models do (by necessity) incorpo-

rate abstracted versions of features such as branch prediction, out-of-order execution,

and speculation, even though they may not all be strictly related to memory or-

dering, as the memory model in some cases inherently depends on the behavior of

these features [AMT14, SSA+11]. In contrast, PipeCheck takes the opposite ap-

proach: it intentionally does aim to capture microarchitecture-specific features, with
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the intention being to verify their correctness with respect to these more abstract

architecture-level models.

Modern specifications for programming languages such as C11/C++11 [BA08,

ISO11b, ISO11a] and Java [MPA05] also use axiomatic specifications as well. Soft-

ware models are multiple layers of indirection away from any given hardware im-

plementation, and it remains difficult to this day to expose hardware-level features

such as dependency-based ordering enforcement in a sufficiently abstract way that

they can be incorporated into general-purpose software models [MRP+14]. Due in

part to this additional complexity, software models such as C++ cannot easily be

incorporated into even fully general-purpose hardware memory model specification

frameworks such as herd [AMT14].

In contrast to the static approach of PipeCheck, some authors have proposed

dynamic consistency model verification techniques which incrementally build and an-

alyze happens-before graphs [CLN03, CMP08, MS05, RZFH06]. These approaches

require some degree of microarchitectural awareness, as the structures used to dynam-

ically observe instructions must be placed at suitable points in the pipeline and/or

cache hierarchy. However, in most cases they simply observe the orderings produced

by the pipeline; they do not in general explicitly model how the pipeline created such

an ordering, or whether other orderings may or may not be possible. Nevertheless,

PipeCheck is able to model the use of dynamic tracking to enforce the consistency

model rather than just to verify its correctness. In other words, PipeCheck can be

used to statically verify the correctness of the dynamic enforcement mechanism.

The computational complexity of memory model analysis is largely prohibitive

on the surface. Gibbons and Korach demonstrated the NP-completeness of veri-

fying sequential consistency and linearizability [GK92, GK94, GK97]. Alur et al.

showed that formally verifying the correctness of an implementation of sequential

consistency is in general undecidable [AMP96]. However, as with many such for-
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mally intractable problems, a great deal of use cases can be successfully analyzed

in practice. Authors have demonstrated the ability to successfully use model check-

ing [AKT13, Qad03], SAT solving [TVD10] and/or through formalization using proof

assistants such as Coq [The04] or HOL [SN08] in spite of the theoretical limitations.

Likewise, the PipeCheck approach benefits from small constant factors that keep its

runtime tractable in spite of the complexity of verification.

Much of the effort in attempting to verify microarchitectural implementations of

consistency models has focused on creating and evaluating litmus tests [AMSS10,

AMT14, SSA+11, TQB+98], including those described explicitly in vendor specifi-

cations [AMD13, ARM09, Dig92, IBM13, Int13a, SPA94b]. Hangal et al. made an

explicit effort to track down the microarchitectural sources of bugs found by test-

ing [HVML04]. However, their approach relies on explicit debugging performed by

the user, and it assumes that bugs will be found through testing. PipeCheck, in con-

trast, uses static analysis and automates the microarchitecture-level analysis process.

Lastly, researchers have developed certifiably-correct embeddings of certain com-

putation patterns down to the register transfer level (RTL). Examples of circuits

verified in this way include state machines, a stack machine, and even a small single-

core processor [BJK+06, BC13, CGJ04, SOIG07]. More recently, Vijayaraghavan

et al. have proven the correctness of a shared-memory multiprocessor written using

BlueSpec [Inc04, VCAD15]. PipeCheck does not aim to replace such RTL-level for-

mal verification; it instead aims to serve both processors which are in earlier design

stages and processors which are (as of the moment) too sophisticated for RTL-level

verification to be feasible, including most industry-strength processors.
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5.9 Chapter Summary

We presented PipeCheck, a methodology and tool for verifying the correctness of a

microarchitecture with respect to its consistency model. PipeCheck demonstrates the

practicality and tractability of defining microarchitectures in terms of their location-

by-location ordering properties and then verifying the correctness of their implementa-

tion of the given consistency model. Our techniques complement other ongoing efforts

to verify the memory ordering correctness of various synchronization primitives and

data structures from the programming language level down to the microarchitecture.

We hope that in the future, PipeCheck will serve both as a framework in which de-

signers can define their microarchitectures and as a tool by which they can verify

the correctness of their implementations. PipeCheck is open-source and is publicly

available at http://github.com/daniellustig/pipecheck [Lus14].

The next chapter extends PipeCheck to verify correct consistency enforcement in

the presence of non-idealized caches.
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Chapter 6

CCICheck: Verifying the

Coherence-Consistency Interface1

While the previous chapter focused on verifying how the pipeline contributes to consis-

tency model enforcement, this chapter presents CCICheck, an extension of PipeCheck

to account for the role cache coherence protocols play in enforcing consistency models.

6.1 Introduction

In real systems, enforcement of consistency models is a collective effort. The previous

chapter focused on the aspects of consistency models enforced by the pipeline, and

it did so while assuming an idealized form of memory. This chapter moves towards

more detailed models of consistency-related aspects of particular cache hierarchies and

coherence protocols. We refer to this extended version of PipeCheck as CCICheck,

where “CCI” stands for the coherence-consistency interface. CCICheck shows that

coherence protocols can be analyzed using PipeCheck and µhb graphs as well, and in

1Some of the work in this chapter was performed in collaboration with fellow graduate student
Yatin Manerkar and other collaborators [MLPM15].
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turn, it shows how PipeCheck can be used to analyze incoherent caches, caches which

occasionally return stale data, and caches which implement lazy forms of coherence.

In an abstract sense, coherence protocols and consistency models are often spec-

ified and verified independently [CGH+93, McM01, ZBES14, ZLS10]. The coher-

ence protocol makes guarantees which are independent of the consistency model—

guarantees such as the single writers/multiple readers (SWMR) invariant. Likewise,

consistency models are defined assuming the existence of some abstract notion of

“coherence”. However, as discussed in Section 2.1.3, the word coherence is often

overloaded. Most often, consistency models assume only write serialization: the ex-

istence of a total order on all stores to the same address.

In practice, however, the line between coherence and consistency is often blurred

for the sake of aggressive performance optimizations such as speculative load reorder-

ing [AMD13, GGH91, Int13a, SPA94b]. This tight coupling drastically increases the

challenge of verifying correct overall system operation. Consider the following exam-

ples. Coherence protocols may enforce write serialization, but they may also enforce

additional properties such as multi-copy atomicity. This means that even though

multi-copy atomicity is a consistency property rather than a coherence property, it

may be enforced by the coherence protocol rather than by the pipeline. Likewise,

as will be described in this chapter, some coherence protocols operate in ways that

violate abstractions such as the “from-reads” edges used in the analysis of Chapter 5,

and the pipeline must be aware of such behaviors when enforcing consistency in the

presence of such protocols. This blurring of responsibilities indicates that verifica-

tion of correct enforcement of consistency models requires more that just the pipeline

models of the previous chapter. It shows that such verification also requires pre-

cise microarchitecture-level models of the ordering properties enforced (or not) by a

particular cache hierarchy.
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A key contribution of this chapter is that it adds much-needed precision to the

definition of the interface between the coherence protocol and the consistency model.

We focus in particular on the role specific coherence protocols play in enforcing consis-

tency at the microarchitecture level. We define as the coherence-consistency interface

(CCI) the set of memory ordering guarantees that the coherence protocol provides

and that the rest of the microarchitecture expects the coherence protocol to provide.

Due to the common decoupling of coherence and consistency at higher levels of ab-

straction, precise yet general-purpose models of the CCI did not previously exist.

Empirically, this has led to much confusion about how coherence and consistency

interact, and it has led to verification of such properties being an under-appreciated

problem in the community.

This chapter presents CCICheck, an extension to PipeCheck to model the effects

of a coherence protocol on the consistency model. Just as with PipeCheck, CCICheck

models the set of orderings enforced by a coherence protocol as axioms specifying self-

contained (and therefore more easily verifiable) sets of behaviors. It also introduces

the concept of a ViCL, or “value in cache lifetime”, which loosely represents the period

of time within which a given value in a cache line can be used by an instruction in a

pipeline. ViCLs allow CCICheck to model cache occupancy and coherence protocol

events of interest, including the demand fetching of a line, the behavior of partially

incoherent and lazily coherent memory hierarchies, and other relevant scenarios widely

seen in today’s systems.

CCICheck shows not only that can the CCI be formally defined; it also shows how

the PipeCheck framework of Chapter 5 can also make verification tractable for mi-

croarchitectures with complex CCIs. The CCICheck approach replaces the reads from

(rf), write serialization (ws), and from-reads (fr) edges used in the previous chapter

with CCI-aware edges that represent microarchitectural enforcement of relationships

such as SWMR by a particular coherence protocol. This finer-grained level of detail,
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combined with the concept of ViCLs, helps CCICheck maintain a level of abstraction

that balances generality, portability, and tractability. The key overall contribution of

CCICheck is that it achieves scalable CCI-aware verification by clearly enumerating

how implementation-level guarantees provided by the pipeline, the coherence proto-

col, and the rest of the microarchitecture combine to enforce all of the requirements

of the consistency model.

The rest of this chapter is organized as follows. Section 6.2 presents a more

in-depth motivation. Section 6.3 introduces the ViCL abstraction, and Section 6.4

describes how they are used in µhb graphs. Section 6.5 presents the experimental

methodology, and Section 6.6 demonstrates some case studies following this method-

ology and some performance numbers to show that CCICheck analysis remains

tractable. Lastly, Section 6.7 presents related work, and Section 6.8 concludes.

6.2 Motivating Example

Using examples of CCI interactions that need verifying in real implementations, this

section motivates and introduces some key characteristics of CCICheck.

6.2.1 Coherence-Consistency Interface Mismatches

During the analysis of the previous chapter, some relationships (e.g., ppo) were de-

composed into sets of more microarchitecturally-inspired µhb edges. Others (e.g., rf,

ws, and fr) were interpreted in a way more directly matching the architecture-level

abstractions. A key insight of this chapter is that in some cases, rf, ws, and fr are also

too abstract to properly model the behavior of some memory hierarchies, and these

edges must also therefore be decomposed into smaller components in the same way

as was done for ppo. Since rf, ws, and fr edges come about due to the interaction of

memory-accessing instructions in the pipeline with the caches they access, CCICheck
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acyclic (rfe ∪ ws ∪ fre ∪ ppo ∪ mfence)

acyclic (rf ∪ ws ∪ fr ∪ po-loc)

Figure 6.1: Axiomatic specification of the TSO memory model [Alg12] (reproduced
from Figure 5.1b)

focuses on specifying the behavior of a given cache coherence protocol in a way that

can be incorporated directly into µhb graphs. This allows coherence protocol µhb

edges to serve as the microarchitecture-level replacements for the architecture-level

rf, ws, and fr hb edges.

Consider the definition of TSO given in Figure 6.1. TSO analysis searches for

cycles among edges such as rf, ws, and fr, among others. Unfortunately, coherence

protocols do not generally specify correctness or behaviors in terms of these edge types

directly. They instead verify properties such as the Single Writers/Multiple Readers

(SWMR) property, which states that if a line containing address a is writable, there

may be no other valid lines containing a, and the Data Value Invariant (DVI), which

states that the value held by any valid line is the value written by the most recent store

to that address [SHW11, SSH+13, ZBES14]. While the ws property is implicit in these

two properties, the rfe and fre properties (and the fact that they are used to check

for cycles in TSO) are stronger assumptions than SWMR and DVI inherently provide.

This CCI mismatch between the guarantees provided by the coherence protocol and

the guarantees expected by the rest of the microarchitecture can lead to consistency

violations if not carefully addressed.

In particular, the definitions of rfe and fre (and their use in cycle checking)

implicitly assume multi-copy atomicity, which is not a universal property of coherence

protocols, and it is beyond what SWMR and DVI inherently provide. In scenarios

where multi-copy atomicity is not enforced by the coherence protocol, enforcement

falls to the pipeline instead. The previous chapter verified pipeline correctness under
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the assumption that multi-copy atomicity is being provided “for free” by the memory

hierarchy, even though it is not a universal coherence protocol guarantee. If the

coherence protocol were replaced with another which does not enforce multi-copy

atomicity, the consistency model would be broken, and outcomes such as that in

the wrc litmus test of Figure 3.3 would become illegally observable. This example

demonstrates how at an implementation level, the pipeline and the coherence protocol

must 1) have a well-defined specification of the ordering properties that they do (or

do not) enforce, and 2) combine to enforce the overall consistency requirements of

the architecture.

Unfortunately, there are a number of important subtleties which can arise when

trying to precisely specify the consistency-relevant orderings enforced by a coherence

protocol. For instance, in a protocol such as the recently-proposed TSO-CC in which

coherence is enforced lazily, L1 cache lines in shared states are neither tracked nor

invalidated by the L2 cache [EN14]. It is instead explicitly the job of the pipeline

to invalidate shared lines in L1 caches. This implies that the coherence protocol

itself does not provide strict multi-copy atomicity, and hence that the approach of

the previous chapter would be insufficient to verify TSO-CC. We discuss TSO-CC

further in Section 6.6.2.

6.2.2 The Window of Vulnerability Problem

As an even more subtle example of non-intuitive CCI behavior, consider the window

of vulnerability problem, a situation in which certain coherence protocols are prone to

livelock due to repeated invalidation-before-use of data propagating through a cache

hierarchy [KCA92]. High-performance split-phase cache coherence protocols allow for

a delay between the sending of a request and the arrival of a response, and they allow

for other messages to become interleaved in between the two. Whenever this causes
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a conflict, the coherence protocol is responsible for detecting the situation. It then

should either cancel and retry the request or tell the pipeline to do so.

Figure 6.2 demonstrates three operational execution sequences of the mp litmus

test. As discussed in previous chapters, under TSO, the mp test outcome r1=1, r2=0

is forbidden, as neither the stores nor the loads may be reordered. The executions of

Figure 6.2 begin identically, as denoted by Steps 1-10 which are common to each: a

prefetch or speculative request for x is issued (step 1) before the load of y executes.

The prefetched line is invalidated (step 4) by core 0’s store to x before the data is

received. The demand request for x from the core is also issued (step 10) before the

(now stale) data for x arrives.

At step 11, the sequences diverge in behavior. In the first execution, the stale

data is dropped and the load is retried. This maintains the TSO requirements, but

no forward progress has been made, and in fact the entire sequence is prone to being

repeated indefinitely, a situation known as livelock [KCA92]. In the second execution,

when the stale value of x arrives at core 1, the coherence protocol returns that value

of x to the core (Step 11b) in an effort to prevent livelock situation described above.

When it does so, it creates a consistency violation by allowing the forbidden outcome

r1=1, r2=0 to occur. This is known as the “Peekaboo” problem [SHW11].

One solution which avoids livelock while also satisfying TSO ordering requirements

is to allow access to invalidated data if and only if the accessing instruction was the

oldest unperformed load or store in program order at the time the coherence request

for the now invalidated data was issued [SHW11]. This effectively reorders the load

to effectively have executed at the coherence point, but the extra oldest-in-program-

order constraint ensures that this does not cause a consistency violation. It also

ensures that forward progress will be made and hence that livelock will be avoided.

The above example clearly depicts a case where a feature of the coherence protocol

(the livelock-avoidance mechanism) affects and is affected by the MCM implemen-
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Core 0 Core 1
(i1) [x]←1 (i3) r1←[y]
(i2) [y]←1 (i4) r2←[x]
Under TSO: Forbid r1=1, r2=0

(a) Code for Litmus Test mp

Core 0 Core 1

1 x: prefetchS miss, issue GetS/ISD

2 x: receive Fwd-GetS, send Data[0]/S

3 x: store miss; issue GetM/SMAD

4 x: receive Data[0](ack=1)/SMA x: receive Inv, send Inv-Ack/ISDI

5 x: receive Inv-Ack, perform store/M[1]

6 y: store hit/M[1]

7 y: load miss, issue GetS/ISD

8
y: receive Fwd-GetS, send

Data[1]/S[1]

9
y: receive Data[1], perform load

r1=1/S[1]

10 x: load miss, stall/ISDI

11a
x: receive and drop Data[0],

replay GetS/ISD

12a x: receive Fwd-GetS, send Data[1]/S

13a
x: receive Data[1], perform load

r2=1/S[1]

(b) The Baseline WoV solution drops stale data upon receipt: livelock-prone, but no
consistency violation

Core 0 Core 1

11b
x: receive Data[0], perform load

r2=0/I

(c) If livelock avoidance is naively added for WoV cases, steps 11a, 12a, and 13a are
replaced simply by step 11b. Stale data returned, resulting in a consistency violation.

Core 0 Core 1

11c

x: receive Data[0], but drop it
because there was another load
(step 7) between the coherence
request (step 1) and this load

(step 10); replay GetS/ISD

12c x: receive Fwd-GetS, send Data[1]/S

13c
x: receive Data[1], perform load

r2=1/S[1]

(d) A livelock-free solution to the Peekaboo problem is to return invalidated data if and
only if the load (step 10) was the oldest in program order at the time the coherence
request (step 1) was issued [SHW11]

Figure 6.2: Three executions of mp using different coherence protocols
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tation in a way that goes beyond traditional coherence protocol properties such as

SWMR. This particular case affects the fre edge of Figure 6.1: it effectively states

that at an implementation level, fre does not hold whenever the coherence protocol

returns already-invalidated data. Just as the previous chapter described sets of µhb

edges which indirectly replace ppo, there must be a set of µhb edges which indirectly

replace fre during the Peekaboo situation. This in turn requires the µhb graph to

explicitly account for of the behavior of the coherence protocol and for events such

as the “original coherence request” used in the example above.

6.3 The ViCL Abstraction

This section introduces the Value-in-Cache-Lifetime (ViCL) abstraction. ViCLs pro-

vide the abstraction by which cache occupancy and value propagation can be modeled

and verified using µhb graphs. The ViCL abstraction can track coherence events rel-

evant to memory ordering while remaining sufficiently abstract that the PipeCheck

verification approach remains scalable and fully general.

6.3.1 ViCLs: Definition and Usage

Conceptually, a ViCL represents the period of time (relative to a single cache) over

which a given value2 is present in a specific cache or memory. To formally define a

ViCL, we first conceptually assign a unique cache id to every cache in the system,

and a unique generation id to each line brought into a given cache over the duration

of an execution. This allows us to uniquely refer to each cache line in an execution

2We assume without loss of generality that each store produces a unique value even if its contents
are identical with the value of another store. This does not affect correctness, as our solver would
consider either value to be a possible source for a load returning the value in question.
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using its cache id and generation id. Formally, a ViCL is a 4-tuple

(cache id, address, data value, generation id)

which maps onto the period of time within which the cache line corresponding to

generation id in the cache identified by cache id holds the value data value for ad-

dress address. A given address and data value pair may have many matching ViCLs

over the course of an execution. These ViCLs could be in different caches (different

cache ids), be brought into the same cache at different points in the execution (dif-

ferent generation ids), or both. Likewise, changes in data values also cause ViCL

changes, which is key to their use in enumerating possible read-write pairings for

consistency verification. There may also be gaps between ViCLs for a given address

and cache pair where there is no value in the cache for that address. In addition, our

definition allows for the (admittedly uncommon, but feasible) possibility that a cache

may hold two lines for the same address simultaneously.

A ViCL time period starts at a ViCL Create event and ends at a ViCL Expire

event. ViCL Create and ViCL Expire events represent the points in time at which

the corresponding ViCL 4-tuple either starts or stops serving the data in question.

A ViCL Create event occurs for address x when either (i) a cache line containing x

enters a usable state from a previously unusable state, or (ii) when a value is written

to x in a cache line. A ViCL Expire event for address x occurs when (i) its cache line

enters an unusable state from a previously usable state, or (ii) a value is written to x

in a cache line.

ViCLs are finer-grained than cache lines, as cache lines hold more than one address.

Note that the creation and expiration of a ViCL for a given address has no inherent

effect on ViCLs of other addresses, even if they do share a cache line. Any such sharing
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possibilities (e.g., evictions due to false sharing) are already handled by CCICheck’s

comprehensive enumeration. In such cases, our analysis is conservative but correct.

We can also assign a unique cache id to capture all of main memory. Because

memory lines are not evicted in the same way that cache lines are, the generation id

for all main memory ViCLs will never change3. ViCLs representing main memory

can be useful to represent uncacheable accesses.

6.3.2 ViCL Timeline Example

To explain the intuition behind ViCLs, Figure 6.3 shows an example of how litmus

test co-mp (Figure 6.3a) might be executed on a processor with private L1 caches and

a shared L2 cache (all of which are coherent with each other). Figure 6.3b presents

a timeline using traditional notions of cache line state, while Figure 6.3c presents

the same timeline using ViCLs. In addition to ViCL create and expire points, it

also denotes the value of ViCL 4-tuples at noteworthy points in the timeline. At the

beginning, the shared L2 cache holds the value 0 for address x. The first thread 0

store then misses in its L1 cache, causing it to fetch the line for exclusive ownership.

When the L2 cache receives the request, the L2 cache’s ViCL expires4. Once the data

arrives at core 0’s L1 cache and the store completes, a new ViCL is created at the

L1 cache, representing both the move to a valid state and the writing of new data.

When the second store then completes, the first L1 ViCL (which had a data value of

1) expires, and a new ViCL is created for x with the value 2. When thread 1 starts

executing sometime later, it will fetch the data from core 0’s L1 cache. This does not

cause a ViCL expiration, as none of the components of the core 0 L1 ViCL’s 4-tuple

change. Instead, the L1 cache forwards the data to the other L1 through the L2,

creating new ViCLs in those caches in the process.

3...unless data is swapped from memory out to disk. We do not consider such a scenario in this
thesis, although the formalism supports it.

4The line may not necessarily be invalidated; it may move to a state tracking the L1 cache as
the new owner. Nevertheless, the ViCL expires because the old data is no longer being served.
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Thread 0 Thread 1
(i1) St [x]←1 (i3) Ld [x]→r1
(i2) St [x]←2 (i4) Ld [x]→r2
In TSO: r1=2, r2=2 Allowed

(a) Variant of litmus test co-mp (normally, the outcome has r2=1)

Core 0
L1$

Shared
L2$

Core 1
L1$

M M S

S S

S

Store
Req./
GetM

Data/
Store
Hit

Store
Req./
Hit

Ack/
Fwd.
Data

Repl./
Silent
Evict

Load
Req./
GetS

Data
Load
Hit

Load
Req./
Hit

(time)

(b) Sample timeline for an execution which produces the legal outcome r1=2, r2=2.
(M = Modified state, S = Shared state)
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(d) Same timeline, but with additional cache line events that may be needed to model
certain scenarios

Figure 6.3: An example of how ViCL nodes relate to events in the cache hierarchy.
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In some scenarios, ViCL create and expire events may be sufficient to verify all

necessary orderings. In more complex scenarios, however, we can add additional

coherence-related events to the timeline, and infer orderings for those events with

respect to ViCL create and/or expire events. For example, a cache line downgrade

event may take place between ViCL Create (for a cache line in an exclusive state)

and ViCL Expire. Similarly, a cache line request event will happen before the ViCL

it fetches gets created. Figure 6.3d shows how these additional events can be included

into the timeline for the same execution of co-mp. Such additional nodes are required

for our Peekaboo and TSO-CC case studies in Section 6.6.

6.3.3 Using ViCLs in µhb Graphs

A key benefit of ViCL events is that they map naturally into nodes within µhb graphs.

Likewise, orderings which are enforced between ViCL events due to coherence protocol

behavior map naturally onto µhb graph edges.

Each possible execution of a program (whether allowed or forbidden by a given

consistency model) gives rise to a mapping from each cache-accessing instruction to

the ViCL accessed by that instruction. When modeling a particular execution by

a µhb graph, we add µhb nodes to the graph for every cache-accessing instruction

representing the ViCL Create and ViCL Expire events for the ViCL(s) that instruction

accesses in the execution. We rely on the microarchitecture definition (Section 6.4.1)

to list all possible caches that a memory-accessing instruction could interact with

(e.g., read directly from L1, read from L2 through the L1, etc.). The address and

data of a ViCL’s 4-tuple must match those of its instruction, and the possibilities for

a ViCL’s generation ID are used to check whether two ViCLs of the same address,

value, and location are the same ViCL or not.

Figure 6.4 illustrates a CCICheck µhb graph with ViCL nodes for the execution

timeline depicted in Figure 6.3c. The four ViCLs in the graph represent the four
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LeaveStoreBuffer
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L1 ViCL Expire
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Figure 6.4: CCICheck graph for the Figure 6.3c scenario.

rightmost ViCLs in Figure 6.3c (the very first ViCL does not need to be enumerated

as its data is not read by any instruction). The edges between the ViCLs reflect

the ordering constraints in the microarchitecture specification (Section 6.4.1). For

example, the dot-dashed brown “SWMR” edge enforces that ViCLs for the first write

to x (i1) must expire before the ViCLs for the subsequent write (i2) are created, as

per the coherence protocol’s SWMR invariant. The “NoDups” edge (which in this

case overlaps with the “SWMR” edge) between the two ViCLs for x in core 0’s L1

cache enforces that the first ViCL for x in the cache must expire before a second

one for the same address in the same cache can be created (i.e., there can be no

duplicates within a single cache at any given time). This reflects a local property of

each individual cache. The two red “SourcedFrom” edges correspond to the arrows in

Figure 6.3c showing x=2 being propagated from the core 0 L1 cache to the core 1 L1
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cache through the L2. Finally, the four thick solid black “UsesViCL” edges represent

the fact that i3 and i4 access the same ViCL in this execution.

In general, for each load, µhb edges represent the fact that the instruction must

access the ViCL sometime between its creation and expiration. Likewise, for each

store, µhb edges represent the fact that the ViCL is created when the store value

reaches the cache (because it changes the data component of the ViCL 4-tuple). µhb

edges are also used to represent any orderings enforced or implied between ViCLs due

to coherence protocol behavior (such as the “SWMR” edge in Figure 6.4) or memory

hierarchy restrictions (like the “NoDups” edge in Figure 6.4). The details of these

orderings are specific to each protocol (or class of protocols). If other cache line events

(like fetch requests and downgrades) are modeled, then the graph will include µhb

nodes representing these events and edges representing their orderings with respect to

other events in the graph. Examples of microarchitectures that require such modeling

can be found in Section 6.6.

The maps from instructions to ViCLs for an execution are not injective (since

there may be multiple instructions which map to a single ViCL); each ViCL’s create

and expire nodes appear in the µhb graph no more than once. They are also not

surjective because there may be ViCLs which are not accessed by any instruction,

such as the first ViCL in Figure 6.3c. We do not need to draw such non-accessed

ViCLs as they are not relevant to consistency enforcement.

6.4 CCICheck and µhb Graphs

This section describes how a CCICheck microarchitecture definition specifies ordering

relationships, as well as how CCICheck conducts its enumeration of µhb graphs. We

begin by describing the general approach, and we give an in-depth example of how

the approach is used to model a single level of caching. We then follow that with a
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description of how the approach extends to models which explicitly include multiple

levels of caching.

6.4.1 ViCL-Aware Microarchitecture Definitions

CCICheck microarchitecture definitions extend the approach of Section 5.3 to account

for the presence of ViCLs. At a high level, models should attempt to decouple the

implementation-level orderings enforced by the pipeline from the implementation-

level orderings enforced by the cache coherence protocol. Note, however, that the line

between the pipeline and the coherence protocol may differ from the architecture-level

understanding of the same line, and the line may at times be blurry. In most cases,

the pipeline definitions from Chapter 5 can be incorporated and directly reused in

this context. However, the idealized rf, ws, and fr orderings of the previous chapter

have been removed in favor of the ViCL-based approach described in this section.

On one hand, a desirable property of the coherence protocol models is that they

involve self-contained axioms of the form that are (or might naturally be) verified by a

coherence protocol verifier. For example, the models may define axioms representing

properties such as the Single-Writer/Multiple-Readers (SWMR) guarantee and Data

Value Invariant (DVI) (Section 6.2) rather than lower-level protocol implementation

details. This choice serves two purposes. First, it allows us to build off of (rather

than compete with) the significant research effort that has gone into verifying co-

herence protocols [SSH+13, ZBES14, ZLS10, VV14, McM01]. Second, it (alongside

our ViCL abstraction) meets our goals of explicitly modeling the orderings required

to verify consistency while abstracting away any lower-level details. We expect that

these details are at a similar level to properties such as SWMR and DVI, and we

therefore expect that they could independently be verified in a similar manner to

those properties.
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SourcedFrom

L1 ViCL Create

L1 ViCL Expire

L2 ViCL Create

L2 ViCL Expire

(i1) (i2)

(a) Explicitly using L1 and L2 cache ViCLs

SourcedFrom

L1 ViCL Create

L1 ViCL Expire

(i1) (i2)

(b) Using only L1 cache ViCLs

Figure 6.5: It is possible to model a system with multiple levels of caching using
a microarchitecture model with only L1 cache ViCLs. Some “SourcedFrom” edges
simply become more abstract, and others may simply be lost. Edges of the latter
class (e.g., the dashed edge above) must be replaced by other axioms as needed.

On the other hand, at the implementation level, in contrast to what might be

expected, few coherence protocol axioms are universal. While properties such as

SWMR may hold true in general in an abstract sense, the implementations may

vary widely. For example, while eager coherence protocols may enforce SWMR in a

strict physical sense, lazy coherence protocols often enforce it only in a more abstract

logical sense, and the two approaches would not behave the same when modeled

in µhb graphs. We therefore leave the specific choice of axioms to each individual

microarchitecture model.

6.4.2 Example: A Model with L1 Cache ViCLs Only

We start by explaining in detail a microarchitecture model which only explicitly in-

cludes ViCLs for the L1 cache. This does not inherently preclude the model from

describing systems with multiple levels of cache; it simply abstracts away any com-

munication which takes place via deeper levels of the cache. For example, two of the

three thicker SourcedFrom edges in Figure 6.5a can be captured using the one thicker

SourcedFrom edge in Figure 6.5b. The third edge cannot; if this edge is needed, it

161



DefineMacro "FindL1ViCL":

exists microop "s",

SamePhysicalAddress s i /\ SameData s i /\ SameCore s i /\

EdgesExist [((s, ViCLCreate ), (i, MemoryStage), "SourcedFrom") /\

((i, MemoryStage), (s, ViCLExpire ), "SourcedFrom")].

Axiom "Reads":

forall microops "i",

OnCore c i => IsAnyRead i =>

EdgesExist [((i, Fetch ), (i, Decode ), "path");

((i, Decode ), (i, Execute ), "path");

((i, Execute ), (i, MemoryStage), "path");

((i, MemoryStage), (i, Writeback ), "path")] /\

(ExpandMacro STBFwd \/ (ExpandMacro STBEmpty /\ ExpandMacro FindL1ViCL)).

Axiom "Writes":

forall microops "i",

OnCore c i => IsAnyWrite i =>

EdgesExist [((i, Fetch ), (i, Decode ), "path");

((i, Decode ), (i, Execute ), "path");

((i, Execute ), (i, MemoryStage ), "path");

((i, MemoryStage ), (i, Writeback ), "path");

((i, Writeback ), (i, LeaveStoreBuffer), "path");

((i, LeaveStoreBuffer), (i, ViCLCreate ), "path");

((i, ViCLCreate ), (i, ViCLExpire ), "path")].

Figure 6.6: CCICheck axioms representing pipeline behavior for a processor with
private L1 caches. See Figure 6.8 for the associated ViCL axioms.

must be captured by some other axiom instead. Section 6.4.3 describes how ViCLs

for deeper levels of the cache can be explicitly modeled when needed.

Figures 6.6 and 6.8 present the pipeline-relevant and ViCL-relevant subsets of a

relatively simple CCICheck microarchitecture model, respectively. Macros STBFwd

and STBEmpty, axioms mfence, RMW, and the pipeline stage in-order axioms are

unmodified from Figures 5.3 through 5.5 and hence are not pictured. Axioms

BeforeOrAfterEveryWriteToSameAddr and WriteSerialization are replaced en-

tirely by the cache-centric axioms in this section. We explain each of these new

axioms in turn below.

Macro FindL1ViCL and Axioms Reads and Writes. Every cache-accessing

instruction interacts with exactly one ViCL. Loads and stores behave very differently,

however. Each store creates a new ViCL, since each store is assumed to write a new

unique data value (Section 6.3.1) and hence instantiates a new ViCL 4-tuple. The

ViCL Create and ViCL Expire µhb nodes are simply appended to the end of the
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path for each store. Note that the ViCL Expire node may occur long after the events

represented by the rest of the nodes in the path have taken place.

Loads require more complicated behavior, as they may or may not share ViCLs

with other loads or stores in the program. Store buffer forwarding behaves identically

to the implementation in the previous chapter; our explanations in the rest of this

section therefore assume a store buffer miss (i.e., STBFwd returns false and STBEmpty

returns true), and we focus on the implementation of FindL1ViCL. Every load instruc-

tion which takes a store buffer miss will read from the cache, which means that it will

return the data stored in some ViCL. We refer to this as a sourcing relationship.

As its name suggests, the FindL1ViCL macro searches for a ViCL from which

load instruction i sources its data. This macro enumerates all possible mappings

between load instructions and ViCLs. It does not enumerate all concrete generation

IDs; it instead only enumerates all possible ways in which instructions may or may

not share ViCLs by enumerating all ways in which they do or do not share a matching

generation ID. The actual generation IDs themselves are moot.

The FindL1ViCL macro searches for all L1 cache ViCLs which match the same

cache id, address, and data. Some possible solutions may already be associated with

other instructions. In this case, i reuses the ViCL associated with that instruction.

Otherwise, the macro may instantiate a new ViCL which is not yet associated with

another instruction.

Figure 6.7 depicts the FindL1ViCL axiom in action. Figure 6.7a shows the code

evaluated in this scenario. This code is single-threaded for the sake of having legible

µhb graphs, although multithreaded examples work identically. Figure 6.7b shows

a partially-evaluated scenario in which (i1) and (i2) were chosen to each have their

own ViCL (i.e., s was chosen to equal i). The remaining three subfigures depict the

three ways in which the same axiom can be evaluated for (i3). Figure 6.7c depicts

(i3) sharing a ViCL with (i1) but not with (i2); this scenario will likely be ruled out
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Figure 6.7: Evaluation of macro FindL1ViCL for instruction (i3)
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in any memory model forbidding load reordering. Figure 6.7d depicts (i3) sharing a

ViCL with (i2); this is valid and even the most likely case, as (i3) would most likely

benefit from the locality in the cache and take a cache hit. Lastly, Figure 6.7e depicts

(i3) having its own ViCL; this is less likely than the preceding cache hit scenario, but

it is possible if, for example, the thread were to be interrupted between (i2) and (i3).

As in the previous example, some instruction-to-ViCL mappings may be ruled

out by coherence protocol orderings which combine to form a cycle. The coherence

protocol axioms are shown in Figure 6.8. We discuss them below.

Macros L1ViCLSource and L1ViCLSourceInitial and Axiom L1ViCLs. Just

as every load instruction which does not forward data from the store buffer must

source its data from some ViCL, each ViCL in turn must have its own source for its

data value. L1 cache ViCLs associated with store instructions are sourced directly

from a store instruction. This is represented by the inclusion of L1 ViCL Create and

L1 ViCL Expire nodes directly within the path of each store (via the Writes axiom).

All other ViCLs must source their data from some other ViCL, thereby forming a

“chain” of ViCL sourcing relationships that ultimately points back to the store that

originally produced the data in question. In models with multiple levels of caching,

an L1 cache ViCL would most often source its data from a ViCL in a lower-level

cache. Figure 6.4 presented an example of this sourcing requirement.

The macros L1ViCLSource and L1ViCLSourceInitial and L1ViCLs work as fol-

lows. Axiom L1ViCLs asserts that every ViCL instantiated by the search process

described above must have a source, and that this sourcing may take place according

to one of the two following macros. Macro L1ViCLSource finds a candidate ViCL i’

and adds two edges indicating that the memory access takes place while the ViCL is

still valid. The latter enforces the Data Value Invariant (DVI) (Section 6.2.1). Macro

L1ViCLSourceInitial asserts that the ViCL associated with i itself sources from the
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DefineMacro "L1ViCLSourceInitial":

DataFromInitialStateAtPA i /\

forall microop "w",

~SameMicroop i w => IsAnyWrite w => SamePhysicalAddress w i =>

EdgeExists ((i, ViCLExpire), (w, ViCLCreate), "DVI", "red").

DefineMacro "L1ViCLSource":

exists microop "i’",

~SameMicroop i i’ /\ amePhysicalAddress i i’ /\ SameData i i’ /\

EdgesExist [((i’, ViCLCreate), (i , ViCLCreate), "SourceFrom")] /\

~exists microop "i’’",

SamePhysicalAddress i i’’ /\ IsAnyWrite i’’ /\

EdgesExist [((i’ , ViCLCreate), (i’’, ViCLCreate), "DVI");

((i’’, ViCLCreate), (i’’, ViCLCreate), "DVI")].

Axiom "L1ViCLs":

forall microop "i",

OnCore c i => IsAnyRead i =>

NodeExists (i, ViCLCreate) \/ NodeExists (i, ViCLExpire)) =>

EdgeExists ((i, ViCLCreate), (i, ViCLExpire), "path") /\

(ExpandMacro L1ViCLSourceInitial \/ ExpandMacro L1ViCLSource).

Axiom "SWMR":

forall microops "i1",

IsAnyWrite i1 =>

(NodeExists (i1, ViCLCreate) \/ NodeExists (i1, ViCLExpire)) =>

forall microops "i2",

(NodeExists (i2, ViCLCreate) \/ NodeExists (i2, ViCLExpire)) =>

~SameMicroop i1 i2 => SamePhysicalAddress i1 i2 => (

(EdgeExists ((i1, ViCLCreate), (i2, ViCLCreate), "swmr")) \/

(EdgeExists ((i2, ViCLExpire), (i1, ViCLCreate), "swmr"))).

Axiom "L1ViCLNoDups":

forall microop "i1",

(NodeExists (i1, ViCLCreate) \/ NodeExists (i1, ViCLExpire)) =>

forall microop "i2",

~SameMicroop i1 i2 => SameCore i1 i2 =>

(NodeExists (i2, ViCLCreate) \/ NodeExists (i2, ViCLExpire)) => (

EdgeExists ((i1, ViCLExpire), (i2, ViCLCreate), "NoDups") \/

EdgeExists ((i2, ViCLExpire), (i1, ViCLCreate), "NoDups")).

Figure 6.8: CCICheck axioms representing memory hierarchy behavior for a processor
with private L1 caches, the vanilla Single Writer/Multiple Readers (SWMR) axiom,
and the Data Value Invariant (DVI). See Figure 6.6 for the associated pipeline axioms.
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(unpictured) initial condition, and that this implies the additional constraint that no

other ViCL of the same cache and address has been created at that point.

Axiom SWMR. Axiom SWMR describes a straightforward implementation of the

Single Writers/Multiple Readers axiom. It states that for any pair i1 and i2 of

ViCLs accessing the same address, if i1 is a write, then either i2 must have been

invalidated prior to the creation of i1, or i2 must be created after i1 is created. The

former represents eager invalidation of cache line sharers, while the latter indicates

that subsequent cache lines may either be sharers of the same data or may be events

happening even later in the timeline. Note that the cache line serving the ViCL i1

may be downgraded to allow for sharers (i.e., “multiple readers”), but this does not

cause the ViCL to expire. Section 6.6.2 returns to subtleties such as lazy invalidation

of sharers and cache line downgrade events.

Axiom L1ViCLNoDups. The L1ViCLNoDups axiom defines a relatively straight-

forward property: that in a given cache, at a given time, there cannot be more than

one valid cache line holding a single address. It is technically possible for this as-

sumption to be violated. Virtually-indexed virtually-tagged caches may indirectly

fall victim to this due to the presence of synonyms (i.e., two virtual addresses which

point to the same physical address), although VIVT caches are uncommon in no

small part to avoid this problem. We assume that L1ViCLNoDups (and its counter-

part L2ViCLNoDups) hold in all microarchitectures modeled in this thesis, but since

it is an axiom specified using the DSL of Section 5.3.2, we could easily remove it to

test scenarios with synonyms and potential duplicates.

6.4.3 Multilevel Caches

Although Figure 6.7 depicts the model of a single-level of caching, CCICheck models

naturally adapt to systems with multiple levels of private and/or shared caches. The

approach is generally the same as the approach for single-level models, except that
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Name Cache Hierarchy Protocol Classification

SharedL1 Shared L1 Eager
PrivL1 Private L1s Eager

Peekaboo Private L1s Eager, with Livelock Prevention
PrivL1/SharedL2 Private L1s, shared L2 Eager

TSOCC Private L1s, shared L2 Lazy

Table 6.1: Memory hierarchy specifications and coherence protocol features of the
microarchitectures analyzed in this chapter

multi-level cache models must be more precise about differences between levels of

the hierarchy. For example, a model must specify whether L1 ViCLs may or may

not source data directly from the L1 caches of other cores, or whether any such

communication must pass through the L2 cache. It must also specify whether L1

cache bypassing is allowed, whether caches are write-back vs. write-through, and so

on. All of these properties can be expressed directly within the PipeCheck DSL.

In many cases, the correctness of data propagation through the hierarchy can be

left to the independent coherence protocol verification process. Lower-level caches

need to be modeled only when some aspect of their behavior is critical to the en-

forcement of the consistency model. The Figure 6.7 model of an L1 cache “zooms

in” on the idealized model of the previous chapter in order to provide enough detail

to model situations such as the Peekaboo problem. For simple cases, this zooming

may be unnecessary, but it is still correct. In more complex cases, this zooming may

in fact be necessary. Likewise, certain protocols may require the model to “zoom in”

even further to capture behaviors specific to the L2 cache as well. Section 6.6 will

provide examples.

6.5 Experimental Methodology

Table 6.1 describes the various microarchitectures that we analyze in this section. In

order to emphasize how unexpected coherence protocol behaviors can appear even in
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simpler microarchitectures with in-order cores, we model the architectures as having

a five-stage in-order pipeline model. Nevertheless, CCICheck easily adapts to more

complex and/or less restrictive pipelines.

Our models cover a variety of memory hierarchies and coherence protocols, includ-

ing single and dual layers of private and/or shared caches. The “Eager” coherence

protocol classification refers to an abstract vanilla coherence protocol that eagerly

invalidates sharers before every write and which is adapted to each different cache

hierarchy arrangement. Other classifications listed in Table 6.1 reflect those described

in Section 6.6.

The analysis is performed using the tool and methodology of Section 5.4 and the

suite of x86-TSO litmus tests from Section 5.5. As Section 6.6.4 shows, although

the µhb graphs are larger in this chapter due to the more sophisticated coherence

protocols, the performance of our automated tool remains acceptable in practice.

Interestingly, at various times during the development process, a pipeline model would

pass all of the tests in the suite, yet we would later discover that certain corner

cases were not addressed. Whenever we became aware of such situations, we added

hand-written litmus tests to stress coherence protocol-inspired features that were not

covered by the existing suite. This highlights the inherent limitations of litmus test-

based approaches, and it indicates the value of more complete formal proofs of the

kind discussed in Section 5.4.6.

6.6 Case Studies

The previous section presented the general approach to modeling ViCLs using CCI-

Check. This section presents some more advanced case studies which model coherence

protocols of the kinds that are used in real-world high-performance processors.
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6.6.1 Partially-Incoherent Caches and L1 Cache Bypassing

Our first example studies extremely weak memory models such as those found in

many GPU systems today [NVIa]. GPUs have very weak default memory models,

so their consistency enforcement tends to come in the form of explicit fences rather

than preserved program order. GPUs also generally claim to be coherent, for some

(often unspecified) definition of coherence (cf. Section 2.1.3) [NVI13b]. In spite of

this, Alglave et al. recently found that coherence requirements are often violated in

practice [ABD+15]. CCICheck and ViCLs provide a natural framework in which the

consistency implications of such scenarios can be analyzed.

Alglave et al. tested GPUs using (among other tests) a modified version of the

mp litmus test. As Figure 6.9a shows, this version of mp has membar fences inserted

between the two stores and between the two loads. Since GPUs are otherwise allowed

to reorder freely, the fences should prevent any reorderings, which should in turn

prevent the forbidden outcome r1 = 1, r2 = 0. However, they discover empirically

that the forbidden outcome is incorrectly observable on many modern GPUs. As the

studied microarchitectures are proprietary, we apply CCICheck to a hypothetical yet

realistic GPU model with small, in-order cores and private L1 caches following the

no-allocate-on-write policy (i.e., on an L1 cache miss, bypass the L1 cache entirely).

Figure 6.9b depicts a CCICheck graph for the litmus test of Figure 6.9b. Both

stores write directly to the L2 cache, while both loads read from the L1. The L1

ViCL for (i6) can only have the test’s prescribed value of 0 if it reads its value from

the L2 before the (i1) store of x reaches the L2 cache. Unfortunately, in this scenario,

there is no cycle in the graph to prevent the bad outcome from happening.

One explanation for this hypothetical scenario is that there is a subtle race con-

dition which allows the (i6) L1 ViCL to be created after the fence (i5) has retired

but sourced from an L2 ViCL which had been invalidated prior to the fence retired.

GPUs contain complicated throughput-optimizing buffers and networks-on-chip be-
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Figure 6.9: Modified mp [ABD+15] on a hypothetical GPU with no-allocate-on-write
and no SWMR guarantee. In particular, the thread 1 fence does not enforce the
load→load ordering, and so there is no cycle.
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tween the cores and the memory system, and it is possible that fences do not take

such buffering into account. This example demonstrates how CCICheck can be used

to catch these subtle bugs in new architectures prior to their release.

6.6.2 Lazy Coherence

The second case study uses CCICheck to analyze CCI behavior in the recently pro-

posed TSO-CC protocol [EN14]. TSO-CC is a scalable lazy coherence protocol for

TSO architectures that uses private L1s and a shared L2 that doubles as a direc-

tory cache. TSO-CC does not track lines in shared state, allowing them instead to

be lazily and automatically invalidated by the core, either due to natural eviction

from the cache or after a certain fixed number of uses. The above results in low on-

chip storage requirements for coherence but requires the pipeline to enforce orderings

that it would not need to enforce in a more standard protocol. Scenarios like this

in which a coherence protocol’s design is tightly coupled with features of an MCM’s

implementation are great examples of the need for CCICheck.

Due to its lazy invalidation policy, the Single Writers/Multiple Readers policy

is enforced logically rather than physically. In other words, although SWMR does

not hold true in a strict physical sense, it does hold true in a more abstract sense:

the cores may be considered non-synchronous, except at communication points, and

SWMR holds according to this abstract timeline. To account for this non-synchrony,

TSO-CC requires each core to “catch up” to a future point in logical time whenever

sees a load miss or a fence by invalidating all shared lines in its private L1 cache (and

hence any possibly out-of-date values) at that time. This ensures that when a core

sees one value from a core other than itself, it is made aware of all previous values

from all other cores as well.

We model TSO-CC in CCICheck by adjusting features in the baseline models as

appropriate. A snippet of this code is shown in Figure 6.10. First, the Single Writ-
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DefineMacro "L1ViCLFlushSharedLines":

forall microops "i’",

(NodeExists (i’, L1ViCLCreate) \/ NodeExists (i’, L1ViCLExpire)) =>

~SameMicroop i i’ => SameCore i i’ => (

EdgeExists ((i’, L1ViCLExpire), (i, L1ViCLCreate), "Flush") \/

(EdgeExists ((i, L1ViCLCreate), (i’, L1ViCLDowngrade), "StillInModified") /\ IsAnyWrite i’) \/

EdgeExists ((i, L1ViCLCreate), (i’, L1ViCLCreate), "CreatedAfter")).

Axiom "L1ViCLs":

forall microop "i",

OnCore c i => IsAnyRead i =>

(NodeExists (i, L1ViCLCreate) \/ NodeExists (i, L1ViCLExpire)) => (

EdgeExists ((i, L1ViCLCreate), (i, L1ViCLExpire), "path") /\

ExpandMacro L1ViCLSource /\ ExpandMacro L1ViCLFlushSharedLines).

Axiom "SWMR":

forall microops "i1",

(IsAnyWrite i1 \/ AccessType RMW i1) =>

(NodeExists (i1, L1ViCLCreate) \/ NodeExists (i1, L1ViCLExpire)) =>

forall microops "i2",

((NodeExists (i2, L1ViCLCreate) \/ NodeExists (i2, L1ViCLExpire)) =>

~SameMicroop i1 i2 => SameAddress i1 i2 =>

(IsAnyWrite i2 \/ AccessType RMW i2) => (

(EdgeExists ((i2, L1ViCLDowngrade), (i1, L1ViCLCreate), "swmr")) \/

(EdgeExists ((i1, L1ViCLCreate ), (i2, L1ViCLCreate), "swmr")))) /\

((NodeExists (i2, (0, L2ViCLCreate)) \/ NodeExists (i2, (0, L2ViCLExpire))) =>

(~SameMicroop i1 i2) => SameAddress i1 i2 => (

(EdgeExists ((i2, (0, L2ViCLExpire)), (i1, L1ViCLCreate ), "swmr")) \/

(EdgeExists ((i1, L1ViCLCreate ), (i2, (0, L2ViCLCreate)), "swmr")))).

Figure 6.10: Relevant subset of the CCICheck axioms for TSO-CC.

ers/Multiple Readers (SWMR) axiom is weakened to ensure that only lines in modified

state are affected; such lines are downgraded to shared, while existing shared lines

(which are not tracked) are ignored. Likewise, the L1 ViCL sourcing axiom L1ViCLs

is modified to state that for each ViCL matching the same address as a ViCL brought

in from the L2 cache, either 1) the cache line was in shared state and must be flushed,

2) the cache line is in modified state (i.e., has not yet been downgraded) and may be

kept as-is, and 3) the cache line is created after the flush occurs. Fences and atomic

read-modify-write instructions behave similarly.

Figure 6.11 shows a µhb graph for the mp litmus test (Figure 6.2a) executing on

a microarchitecture implementing TSO-CC. Since shared lines in the L1 caches are

invalidated lazily, the L1 ViCL for the load of x need only be sourced before the store

of x occurs as opposed to being invalidated before it. This relationship is identical to

the case of the partially incoherent architecture covered in Section 6.6.1. Intuitively,
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SourcedBefore

popo

SourcedFrom

SWMR

Flush

FetchStage

DecodeStage

ExecuteStage

MemoryStage

WritebackStage

StoreBuffer

L1 ViCL Create

L1 ViCL Downgrade

L1 ViCL Expire

L2 ViCL Create

L2 ViCL Expire

(i1) (i2) (i3) (i4)

Figure 6.11: µhb graph for mp on TSO-CC [EN14]. Although the coherence protocol
does not eagerly invalidate any sharers of x before allowing (i1) to perform, the
necessary orderings are enforced by (i3) flushing the cache upon taking a cache miss.

in TSO-CC, if the load of y returns the value 1, it must have taken a cache miss at

some point, allowing the new value of 1 to be fetched from core 0. Core 1 would have

invalidated shared lines in its L1 cache at the time of this cache miss, and thus the

ViCL for the load of x must be created after the ViCL for the load of y is created.

The litmus test specifies a forbidden outcome, so the verification goal is to iden-

tify a cycle in the µhb graph. If the TSO-CC implementation properly flushes the

cache as specified, then the “Flush” edge will exist, creating a cycle in the graph and

indicating that TSO-CC maintains TSO for this execution. If the “Flush” edge did

not exist, the graph would be acyclic and the forbidden test outcome would be po-

tentially observable, indicating that TSO-CC’s flushing of shared L1 lines on a cache
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miss is a critical part of how it maintains TSO. Not only does the ViCL abstrac-

tion allow for comprehensive CCI verification, but the automatically-enumerated µhb

graphs give the designer considerable intuition about how and why correct behavior is

preserved. Although the authors of TSO-CC performed testing via simulation, CCI-

Check is more comprehensive because it allows for exhaustive enumeration of possible

ordering scenarios, where simulation may be limited to just a few different orderings

or interleavings.

We also hope that CCICheck helps clarify statements such as the TSO-CC authors’

claim that most coherence protocols are designed for sequential consistency [EN14].

As numerous widely-used MCMs such as TSO, ARM, and Power are considered co-

herent yet not sequentially consistent, it is easy to misinterpret such a claim. The

coherence protocol cannot enforce the consistency model independently of pipeline

components such as store buffers or of pipeline behaviors such as speculative load

reordering. Our point of view is that both coherence protocols and pipelines provide

certain (implementation-level) ordering properties, and that consistency models re-

quire certain ordering properties. A coherence protocol may be designed to provide

the kinds of strong properties that a stricter consistency model (such as SC) may

require, but it is nevertheless up to the system as a whole to ensure that consistency

is properly enforced.

6.6.3 Window of Vulnerability/Peekaboo

This section demonstrates the use of CCICheck to verify the solution to the window

of vulnerability (WoV) and Peekaboo problem previously introduced in Section 6.2.2.

The solution required that loads and stores access already-invalidated data if and

only if they were the oldest in program order at the time of the coherence request for

the accessed line. The CCICheck model for the Peekaboo protocol therefore includes

a Cache Request node and a Cache Line Invalidate node. The Cache Request node
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DefineMacro "L1ViCLSource":

exists microop "i’", (

SamePhysicalAddress i i’ /\ ~SameMicroop i i’ /\ SameData i i’ /\

EdgesExists ((i’, ViCLCreate), (i , ViCLCreate ), "src", "blue") /\

((i’, ViCLCreate), (i’, ViCLInvalidate), "DontSrcFromPeekabooViCL")] /\

~exists microop "i’’",

SamePhysicalAddress i i’’ /\ IsAnyWrite i’’ /\

EdgesExist [((i’ , ViCLCreate), (i’’, ViCLCreate), "DVI");

((i’’, ViCLCreate), (i , ViCLCreate), "DVI")]).

DefineMacro "FindL1ViCLNormal":

exists microop "s", (

SamePhysicalAddress s i /\ SameData s i /\ SameCore s i /\

EdgesExist [((s, ViCLCreate ), (i, MemoryStage ), "rf");

((i, MemoryStage), (s, ViCLInvalidate), "rf");

((s, ViCLCreate ), (s, ViCLInvalidate), "path")]).

DefineMacro "FindL1ViCLPeekaboo":

(~AccessType RMW i) /\

exists microop "s", (

SamePhysicalAddress s i /\ SameData s i /\ SameCore s i /\

EdgesExist [((s, ViCLInvalidate), (s, ViCLCreate ), "path");

((s, ViCLCreate ), (i, MemoryStage), "rf");

((i, MemoryStage), (s, ViCLExpire ), "rf")] /\

forall microop "i’",

ProgramOrder i’ i => (

(IsAnyRead i’ => EdgeExists ((i’, MemoryStage), (s, ViCLRequest), "peekaboo")) /\

(IsAnyWrite i’ => EdgeExists ((i’, ViCLCreate ), (s, ViCLRequest), "peekaboo")))).

DefineMacro "FindL1ViCL":

ExpandMacro FindL1ViCLNormal \/ ExpandMacro FindL1ViCLPeekaboo.

Figure 6.12: Relevant subset of the CCICheck axioms for the Peekaboo scenario

represents the time at which a core makes a coherence request for a particular line,

and the Cache Line Invalidate node represents the point at which an invalidation

request is processed. Here, unlike the cases previously discussed, the invalidation of

the ViCL is not the same as its expiration. This is because a load may return the

invalidated data to one instruction in an effort to avoid livelock.

Figure 6.12 shows the key axioms used to model the Peekaboo scenario. Each load

may choose one of two options: it may behave as a normal load (i.e., it may behave

the same as in the baseline models), or it may be a Peekaboo load in which the cache

line invalidation arrives before the data is used. In the latter case, we simply add a

new set of µhb edges to represent the fact that the instruction must be the oldest in

program order at the time of the coherence request: all previous instructions must

have completed before the Cache Request for the instruction in question takes place.
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L1 ViCL Expire
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Figure 6.13: µhb graph for the solution to the Peekaboo coherence problem.

Figure 6.13 demonstrates a µhb graph for the Peekaboo solution technique, again

for the mp litmus test. Since invalidated data is only returned to the core if the

instruction it is returned to was the oldest in program order at the time of the

coherence request, our µhb graph must be able to include happens-before edges that

indicate that. In particular, consider the load (i4) which accessed invalidated data.

The graph includes a µhb edge (in this case labeled “Peekaboo”) from the memory

stage of all preceding accesses on the same core (i.e., (i3)) to the Cache Request node

of (i4). The presence of the Peekaboo µhb edge ensures that a cycle is created, thereby

preventing the illegal outcome. Thus, CCICheck helps designers verify that as long as

the implementation ensures that the requesting instruction was the oldest in program

order at the time of the coherence request, this livelock avoidance approach abides

by TSO consistency.
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Finally, we note that (unsurprisingly) the act of formally specifying CCI behav-

ior can sharpen a designer’s understanding of system behavior. For example, the

original English-language description of the problem [SHW11]—while very thorough

and perhaps clear to many—required us to interpret where instructions preceding the

Peekaboo load (in program order) must have progressed before performing the load.

In creating the CCICheck model, we were able to use the tool to determine that a

correct design would only allow the load to access invalidated data if all previous

loads were performed and all previous stores had reached the memory hierarchy and

become visible to all cores before the coherence request for the Peekaboo instruction

was issued. By requiring formal and explicit documentation regarding such decisions,

the CCICheck model becomes a more precise solution specification than any natural

language description could be.

6.6.4 Performance Results

Figure 6.14 shows the runtimes of CCICheck across the x86-TSO litmus test suite.

As in Section 5.6, there can be significant variation in the time it takes CCICheck to

run a litmus test across tests and across microarchitectures. This is to be expected

as litmus tests have varying numbers of instructions and varying potential for ViCL

pairing and thus different ranges of possibilities. However, even though the graphs

and the models are larger than they were in the previous chapter, and even though

the ViCL abstraction adds complexity to the constraints that must be satisfied, the

runtimes clearly still remain very tractable.

Just as in the previous chapter, the published CCICheck solver runtimes were

originally much longer [MLPM15], with some tests taking as long as hours and large

amounts of memory. The development of the solver of Section 5.4.2 provided a much-

needed boost in performance while maintaining (and through the use of the DSL,

even improving) the generality of the approach.
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6.7 Related Work

CCI Definition and Verification. It is a compelling notion that coherence and

consistency should be decoupled [Mar05]. Because of this, and because verification of

each individually is more tractable than combined verification, much of the prior work

discussed in this section focuses primarily on one or the other. Unfortunately, since

most implementations of coherence and consistency become interwoven for perfor-

mance or design reasons [ABD+15, ADC11, CKS+11, EN14, KSB95, RK12, SHW11],

such a separation is insufficient, and verification of the CCI is an under-researched

necessity. CCICheck’s µhb graphs, ViCL abstractions, and axiomatic treatment of

coherence protocol behaviors allow it to fill the CCI verification gap.

Computational Complexity. Alur et al. showed that verifying that a protocol

correctly implements sequential consistency can in the worst case be formally unde-

cidable [AMP96]. However, follow-up work later showed that verification of SC given

certain realistic assumptions about loads not being able to receive data from future

stores is in some cases decidable [BCH03, CH03]. Verifying memory coherence, as

a decision problem, is NP-complete if coherence is considered equivalent to verifying

sequential consistency for programs with only one variable [CLS03]. Furthermore,

verifying sequential consistency remains NP-hard even if coherence is assumed to

already hold true [CLS03].

In spite of the theoretical intractability of many consistency model verification

problems, researchers have proposed numerous static and dynamic analysis tools

which have been able to verify practically-relevant cases [AMT14, CMP08, HVML04,

MS05, SSA+11]. Furthermore, many authors conjecture that consistency model be-

havior can be captured through the understanding of certain well-defined patterns,

and these patterns can be directly encoded as litmus tests and/or sets of constraints

in a model [AMT14]. These litmus tests tend to be small, consisting of no more
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Ref. Protocols Coherence Liveness
Deadlock
Freedom

Safety
Properties

[CGH+93] Futurebus+ — — — X
[PSCH98] SGI Origin 2000-like SC — — —
[McM01] FLASH [KOH+94] SC per loc. X — —
[CMP04] German [PRZ01], FLASH — — — X
[SSH+13] Chained Cache Coh. MOESI, DVI — X —
[STM14] FLASH, German — — system-wide —

Table 6.2: A brief sampling of coherence protocol verification approaches

than dozen instructions or so. As in this chapter and the previous chapter, the small

constant factors keep our analysis tractable in practice.

Coherence Verification. The field of cache coherence protocol verification has

also seen significant attention from architecture researchers, from formal methods

researchers, and from industry. Early work in this realm explored the verification of

the FutureBus+ protocol using temporal logic model checking [CGH+93]. In modern

research, formal modeling languages such as Murphi or TLA+ are often used to specify

and to verify properties of many coherence protocols [DDHY92, Lam02, McM01,

SSH+13, STM14]. Some of these projects directly verify coherence (for some definition

of coherence, see Section 2.1.3). Some verify other properties: for example, freedom

from deadlock, a liveness guarantee, or various safety properties concerning certain

invariants that should always hold true or that should never hold true in any state.

Just as the definition of coherence varies across different studies, the properties being

verified vary widely. Table 6.2 gives a very brief sampling of how approaches differ in

this regard. Among the protocols verified, the German protocol is notable for being

designed to serve as a challenge for formal verification methods [CMP04]. More

recently, Zhang et al. [ZBES14, ZLS10] have proposed techniques for designing cache

coherence protocols in ways that make them inherently more amenable to formal

verification. As stated earlier, PipeCheck interprets the properties verified by the

above research as axioms which it then uses to verify the correctness of a consistency

model implementation built on top of such protocols.
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Vijayaraghavan et al. prove the correctness of a parameterized processor design

written in BlueSpec [Inc04, VCAD15]. They demonstrate that the processor as a

whole, including multiple speculative out-of-order cores and a directory-based coher-

ence protocol with an arbitrary number of nodes and levels, correctly implements

sequential consistency. Their approach, however, used manual proofs written in

Coq [The04], and it does not yet support verification of memory models weaker than

sequential consistency PipeCheck supports automated verification of a broader range

of weak memory models.

6.8 Chapter Summary

This chapter demonstrated that the µhb analysis techniques of the previous chap-

ter can be readily extended to model the consistency-related features of a specific

coherence protocol. More broadly, it demonstrated how coherence and consistency

are inherently intertwined at a microarchitecture level, and that naive extensions

of architecture-level relationships such as rf, ws, and fr do not always correspond

to reality. To address this, we introduced the notion of a value-in-cache-lifetime,

or ViCL, which allowed us to replace the no-longer-applicable edges with cache-

focused axioms such as the Single Writers/Multiple Readers (SWMR) axiom. Us-

ing this strategy, CCICheck builds off of previous work in coherence protocol ver-

ification [CGH+93, McM01, SSH+13, ZBES14, ZLS10] rather than competing with

or reproducing it. This breeds confidence in the potential for future extensions to

PipeCheck and CCICheck to be able to capture the behavior of particular networks-

on-chip, address translation subsystems, and so on, thereby improving the tractability

of whole-chip verification in the real world.
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Chapter 7

Conclusion and Future Directions

This section describes ongoing and future work, and it then concludes the thesis.

7.1 Future Directions

There are many important and exciting possible ways in which the work in this thesis

can be further extended. Some of these possibilities are considered below.

7.1.1 Further Extensions of PipeCheck

One exciting avenue for future work to extend PipeCheck and CCICheck to analyze

broader notions of correctness that consistency models traditionally address.

One extension to PipeCheck which is ongoing as this thesis is being written is

the extension of PipeCheck to verify the intersection of memory consistency models

with address translation. Romanescu et al. demonstrated that consistency models for

virtual addresses may differ from consistency models for physical addresses [RLS10].

They also demonstrated the need for consistency verification methods to take into

account address remapping and permission changing functions such as mmap and

mprotect. Along with some collaborators, I am currently developing ATCheck to
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explicitly model both virtual and physical addresses, memory mapping/remapping

functions, OS effects related to TLB maintenance, and other related mechanisms. I

believe that ATCheck will be able to help resolve bugs (which are unfortunately all

too common) in the address translation subsystem, just as PipeCheck and CCICheck

were able to do for the pipeline and cache coherence protocol, respectively.

More broadly, I believe that the PipeCheck DSL and software have the potential

to find widespread adoption in the architecture community. The PipeCheck DSL is

flexible enough to describe orderings at many different levels of abstraction, thereby

allowing users to describe their ideas at the level of abstraction that makes the most

sense for the given scenario and/or that they are most comfortable using. The software

is fast enough to provide quick or even nearly-instant feedback to the user, thereby

providing a lower barrier to entry for architects wishing to validate their work. My

hope is that one day, PipeCheck (or an extension thereof) will become a standard for

demonstrating the MCM correctness of any new architectural design, much as how

verification of a coherence protocol using, e.g., Murphi or TLA+ has become a de

facto requirement when proposing new coherence protocol designs [DDHY92, Lam02].

Lastly, I believe that µhb graphs and the axiom-based approach of the PipeCheck

DSL will be able to serve as a valuable teaching tool for students learning how mem-

ory consistency models are defined and implemented. A common criticism of memory

models in general is that they are highly confusing and opaque, and this often makes

it difficult for students to fully grasp the details of memory model analysis tech-

niques or even to fully appreciate the need for such techniques in the first place. The

PipeCheck approach provides two key advantages in this regard. First, it decom-

poses the problem of specifying memory models into smaller axioms which are often

finer-grained and more concrete (in the sense of representing some specific microar-

chitectural behavior), making them easier to comprehend. Second, it supplements
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dense mathematical formalisms with easily-visualizable µhb graphs, thereby hope-

fully increasing the accessibility of the topic to a broader audience.

7.1.2 Formal Correctness Proofs

Although the PipeCheck analysis framework has been implemented within Coq, it

has not yet taken advantage of the Coq’s ability to build formal proofs of correct-

ness. The first challenge, as stated in Section 5.4.1, is that there are many cases

in which a proper architecture-level consistency model specification simply does not

exist. Nevertheless, for cases in which a specification does exist, it should be pos-

sible to derive fully formal correctness specifications using the approach laid out in

Section 5.4.6. It may well also be possible to leverage the ability of PipeCheck to

perform automated exploration of the search space in order to generate proofs or

proof components entirely automatically.

Likewise, our verification approach is only as sound as our microarchitecture mod-

els are with respect to the actual underlying microarchitectures. A follow up project

that would be very beneficial would be to rigorously compare the behavior of a de-

sign at the register transfer level (RTL) to the axioms stated in our microarchitecture

models. With both of the above, it would be possible to build a complete formal

proof correctness from the software level all the way down to the transistor level.

Lastly, one can explore how ArMOR might be formalized more rigorously as well.

This could help lend increased reliability to case studies such as the dynamic trans-

lation shims of Chapter 4. It could also help in the process of integrating ArMOR

and PipeCheck to form a complete and unified framework for analyzing consistency

models at the hardware level and below.
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7.2 Thesis Conclusions

Exciting times lie ahead for the field of computer architecture. Dennard scaling

has seemingly faltered, and the continued transistor density doubling predicted by

Moore’s law will eventually reach its limit. Even Intel, currently the world’s leading

semiconductor manufacturer, announced that its 10nm silicon fabrication process

would be delayed by a year [HS15]. While it is impossible to predict the future,

it is not inconceivable to think that the future of computer architecture may soon

look dramatically different than the silicon-based world of today. From a research

perspective, this future presents a fascinating new world just waiting to be explored.

It is fairly clear that architectures of the near future will become increasingly

specialized and heterogeneous. Accelerators are already ubiquitous; GPUs are

widespread, and mobile systems-on-chip in particular already make significant use

of specialized compute units in order to meet their performance and power targets.

Furthermore, systems are increasingly interconnected, both directly and indirectly

through the Internet. In this setting, communication between components and

between devices (via shared memory or otherwise) will be of paramount importance

for performance and for correctness. Therefore, techniques like PipeCheck become

all the more central.

If and when new materials and device technologies supplant the traditional silicon-

based paradigm, they could very well introduce questions analogous to the questions

addressed by existing memory consistency models. Many exciting new memory tech-

nologies are being studied and implemented in modern systems; examples such as

flash and 3D-stacked DRAM have already gained commercial acceptance. They also

raise new questions. For example, many of these new memories are persistent—they

do not lose their state when power is removed. As a consequence, researchers have

also begun to consider the correctness implications of memory “persistency”, the set

of rules for enforcing orderings between the points when memory accesses become
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persistent [PCW14]. For these kinds of complex designs, achieving programmability

without sacrificing performance, power efficiency, and correctness will require robust

and flexible frameworks for specifying and analyzing memory consistency and any

other form of correctness.

This thesis makes various contributions to the state of the art of computer archi-

tecture and memory consistency model analysis techniques. Building off of a growing

body of research demonstrating the need for rigor when specifying and verifying mem-

ory consistency models, this thesis presents new techniques for extending rigorous

memory model analysis down to the microarchitecture layer. ArMOR brings much-

needed clarity to the widely-used yet fundamentally-flawed informal specifications

used by many industry products and academic projects. PipeCheck then derives the

first formal microarchitecture-level memory models and verifies their behavior against

a given architecture-level specification.

Overall, this thesis makes the following contributions:

• Chapter 3 presents a novel unifying framework for specifying and comparing

memory models. The MOST syntax defines a single precise, self-contained, and

architecture-independent framework that can be used to define the memory

models of many widely-used architectures. The ArMOR framework then allows

for the systematic comparison, analysis, and manipulation of MOSTs, thereby

allowing MOST-based consistency model analysis to be embedded within com-

pilers, dynamic binary translators, or other software or hardware components.

ArMOR allows features such as preserved program order and fences to be di-

rectly compared to each other, even when they originate from different models.

This ensures that such analyses are less prone to the kinds of subtle bugs that

often appear in memory model analyses. The flexibility of ArMOR also allows

memory model analysis techniques to be extended to heterogeneous systems

with components implementing more than one type of memory model. This
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flexibility will become invaluable as architectures become increasingly hetero-

geneous and, following the progression of accelerators such as GPUs, as compo-

nents are increasingly expected to share memory flexibly and at fine granularity.

• Chapter 4 provides a concrete example of how the techniques developed in this

thesis can be used to enable new technologies that simply could not exist prior to

this thesis. The example used in this chapter, the derivation of dynamic binary

translation shims which account for differences in memory consistency models

between the source and target architectures, fills a crucial gap that previous

dynamic binary translators and emulators were unable to solve [DVT12, Qem15,

VT14]. MOSTs and the ArMOR framework provide an elegant solution to

these problems by presenting the first general-purpose algorithm for translating

between any two memory models provided as inputs. More broadly, this chapter

presents an example of how the algorithms enabled by ArMOR can easily scale

to the needs of forward-looking technologies.

• Chapters 5 and 6 present the first general-purpose framework for rigor-

ously specifying and verifying memory consistency model behavior at the

microarchitecture-level. While the past decade has seen significant progress

made to improve the specifications of software models such as C++ and

Java and of hardware models such as x86-TSO, Power, and ARM, it has

seen little similar effort to verify that architecture-level models were being

implemented correctly. PipeCheck and CCICheck present allow formal analysis

techniques to extend down to the implementation level, thereby enabling proofs

of correct behavior to extend from software all the way down to a particular

microarchitecture. They also allow microarchitectures which do not yet have

formal (or even informal) memory models (e.g., most accelerators) or which

rely on microarchitecture-specific just-in-time (JIT) compilation paradigms
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(e.g., GPUs) to nevertheless be rigorously analyzed. The PipeCheck approach

derives architecture-level correctness from a set of localized implementation-

level axioms. The approach also enables a new, more tractable path towards

extending verifiability all the way down to the transistor level.

Although memory consistency models have been studied since the 1970s, they

remain an important and active area of research. Decades of effort have shown that

memory models are more than just an engineering problem. Most attempts to define

sound models which enable high-performance implementations and which are pro-

grammable by non-“experts” [BA08] tend to start their life flawed and only improve

after years of iteration [AMT14, AŠ07, BA08, MPA05, SSA+11]. Many popular mod-

els are still iterating even today [ABD+15, BMO+12, SMO+12, VBC+15]. Given the

trend toward increased heterogeneity and specialization, problems of cross-component

communication and synchronization are likely only to increase in importance.

This thesis makes a number of important contributions to memory consistency

model research from a microarchitect’s point of view, and it does so in a way that

balances the theoretical need for formalism and rigor with the practical need to be able

to analyze real systems. The analysis techniques introduced here can help eliminate

some of the consistency-related hardware and software bugs that continue to appear in

real widely-used systems. They can also help shed much-needed light on why memory

models are inherently complicated yet fundamentally important, how memory model

enforcement mechanisms are implemented, and how all of the above will need to be

adapted to the architectures of the future.
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Appendix A

Gallery of MOST-based Definitions

for Well-Known Architectures

The following appendix presents a gallery of MOSTs for well-known architectures.

Its purpose is twofold. First, it demonstrates how MOSTs can be used to describe

the MORs of many highly-relevant hardware memory models. Second, it provides a

demonstration of how ordering enforcement mechanisms differ across these different

architectures. All of the MOSTs in this appendix have been refined to distinguish

same vs. different address relationships and to account for cumulativity, even though

many of the MOSTs may otherwise be defined in simpler forms.

We model the following architectures:

• Sequential Consistency (SC) [Lam79].

• SPARC hierarchy: total store ordering (TSO), partial store ordering (PSO),

and relaxed memory ordering (RMO) [OSS09a, SPA94b]. Note that although

the word “relaxed” is often used as a generic term, in the context of SPARC

RMO it has a well-defined meaning.
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• POWER and ARM [ARM13, AMT14, IBM13, MHMS+12, SSA+11]. Note that

our MOSTs treat loads as single events, while recent formalizations treat them

as consisting of multiple events. This causes our MOST-based Power model

to be strictly stronger than the standard Power model, with discrepancies in

394 (5%) out of 7536 litmus tests from an existing suite of litmus tests for the

Power architecture. The ARM model is likewise stronger than standard ARM

models. This could be corrected by adding strength levels (Section 3.3.1) which

distinguish between the multiple load events as well.

• NVIDIA PTX [ABD+15, NVI13b]. Note that 1) this model is not yet as well

formalized as the other models described above, and 2) this model does not

provide a way to enforce cumulativity, and it therefore cannot be made to

behave in a sequentially consistent manner, in contrast with essentially all other

general-purpose MCMs.

The code which automatically generated these shims (and this appendix) is avail-

able online [Lus15]: https://github.com/daniellustig/armor.

A.1 Sequential Consistency (SC)

PPO
PO LD/DA PO LD/SA BC LD PO ST/DA PO ST/SA BC ST

AC LD XS XS XS XS XS XS

AC ST XS XS XS XS XS XS

PO LD XS XS XS XS XS XS

PO ST XS XS XS XS XS XS

Figure A.1: MOSTs for MCM Sequential Consistency (SC)

A.2 SPARC® Total Store Ordering (TSO)
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PPO
PO LD/DA PO LD/SA BC LD PO ST/DA PO ST/SA BC ST

AC LD XS XS XS XS XS XS

AC ST XS XS XS XS XS XS

PO LD XS XS XS XS XS XS

PO ST — XL XS XM XM XS

mfence
PO LD/DA PO LD/SA BC LD PO ST/DA PO ST/SA BC ST

AC LD XS XS XS XS XS XS

AC ST XS XS XS XS XS XS

PO LD XS XS XS XS XS XS

PO ST XS XS XS XS XS XS

Figure A.2: MOSTs for MCM SPARC® Total Store Ordering (TSO)

A.3 SPARC® Partial Store Ordering (PSO)

PPO
PO LD/DA PO LD/SA BC LD PO ST/DA PO ST/SA BC ST

AC LD XS XS XS XS XS XS

AC ST XS XS XS XS XS XS

PO LD XS XS XS XS XS XS

PO ST — XL XS — XM XS

mfence
PO LD/DA PO LD/SA BC LD PO ST/DA PO ST/SA BC ST

AC LD XS XS XS XS XS XS

AC ST XS XS XS XS XS XS

PO LD XS XS XS XS XS XS

PO ST XS XS XS XS XS XS

Figure A.3: MOSTs for MCM SPARC® Partial Store Ordering (PSO)

A.4 SPARC® Relaxed Memory Ordering (RMO)
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PPO
PO LD/DA PO LD/SA BC LD PO ST/DA PO ST/SA BC ST

AC LD XS XS XS XS XS XS

AC ST XS XS XS XS XS XS

PO LD — XS XS — XS XS

PO ST — XL XS — XM XS

mfence
PO LD/DA PO LD/SA BC LD PO ST/DA PO ST/SA BC ST

AC LD XS XS XS XS XS XS

AC ST XS XS XS XS XS XS

PO LD XS XS XS XS XS XS

PO ST XS XS XS XS XS XS

Figure A.4: MOSTs for MCM SPARC® Relaxed Memory Ordering (RMO)

A.5 Power Architecture®

PPO
PO LD/DA PO LD/SA BC LD PO ST/DA PO ST/SA BC ST

AC LD — — — — — —
AC ST — — — — — —
PO LD — XS — — XS —
PO ST — XL — — XN —

dep
PO LD/DA PO LD/SA BC LD PO ST/DA PO ST/SA BC ST

AC LD — — — — — —
AC ST — — — — — —
PO LD XS XS — XS XS —
PO ST — XL — — XN —

lwsync
PO LD/DA PO LD/SA BC LD PO ST/DA PO ST/SA BC ST

AC LD XS XS XS XS XS XS

AC ST — — — XN XN XN

PO LD XS XS XS XS XS XS

PO ST — XL — XN XN XN

sync
PO LD/DA PO LD/SA BC LD PO ST/DA PO ST/SA BC ST

AC LD XS XS XS XS XS XS

AC ST XS XS XS XS XS XS

PO LD XS XS XS XS XS XS

PO ST XS XS XS XS XS XS

Figure A.5: MOSTs for MCM Power Architecture®

193



A.6 ARM® Architecture

PPO
PO LD/DA PO LD/SA BC LD PO ST/DA PO ST/SA BC ST

AC LD — — — — — —
AC ST — — — — — —
PO LD — XS — — XS —
PO ST — XL — — XN —

dep
PO LD/DA PO LD/SA BC LD PO ST/DA PO ST/SA BC ST

AC LD — — — — — —
AC ST — — — — — —
PO LD XS XS — XS XS —
PO ST — XL — — XN —

dmb
PO LD/DA PO LD/SA BC LD PO ST/DA PO ST/SA BC ST

AC LD XS XS XS XS XS XS

AC ST XS XS XS XS XS XS

PO LD XS XS XS XS XS XS

PO ST XS XS XS XS XS XS

Figure A.6: MOSTs for MCM ARM® Architecture

A.7 NVIDIA® PTX

PPO
PO LD/DA PO LD/SA BC LD PO ST/DA PO ST/SA BC ST

AC LD — — — — — —
AC ST — — — — — —
PO LD — XS — — XS —
PO ST — XL — — XN —

membar
PO LD/DA PO LD/SA BC LD PO ST/DA PO ST/SA BC ST

AC LD — — — — — —
AC ST — — — — — —
PO LD XS XS — XS XS —
PO ST XS XS — XS XS —

Figure A.7: MOSTs for MCM NVIDIA® PTX
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Appendix B

Gallery of Shim FSMs

The following appendix presents a gallery of MOSTs and shim FSMs used in the

evaluation of Chapter 4. The goal of the appendix is to demonstrate 1) the breadth

of applicability of ArMOR, and 2) to demonstrate that shims are generally no more

than a few states

In the implementation of Section 4.4.2, addresses may not all be resolved by

the time instructions reach the issue queue. The analysis in this appendix ignores

the distinction between same- vs. different-address relationships when deriving shim

designs. Instead, it chooses the more conservative option in each case.

The following architectures are considered in this appendix:

• The models from Appendix A: SC, SPARC TSO, SPARC PSO, SPARC RMO,

Power, and ARM, except that the shims do not distinguish same vs. different

address relationships.

• Partial load ordering (PLO), named by analogy to SPARC PSO, and load-store

ordering (LSO), a slightly more permissive variant. These provide more variety

within the SPARC hierarchy [MHAM11, SPA94b].

• RMO16: like SPARC RMO, but with a finer-grained set of fences.
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• PowerA: a multi-copy atomic variant of Power, added as a comparison point and

to demonstrate how shims targeting this variant can often be more intelligent

than shims targeting Power, as the lack of multi-copy atomicity in the latter

introduces unrecoverable overheads (Section 4.6)

Lastly, the caveat from Appendix A about Power and ARM being stronger than

the standard definitions remains true. This turns out not to affect the results of this

appendix. When Power/ARM are upstream models, it is conservative to assume a

stricter-than-necessary specification of the model, and so this does not pose a problem.

When Power or ARM serves as the downstream model, all of the shims already require

sync or dmb, respectively, to be inserted before every instruction emitted downstream,

so the discrepancy turns out not to pose a problem.

The code which automatically generated these shims (and this appendix) is available

online [Lus15]: https://github.com/daniellustig/armor.

TSO PLO PSO LSO RMO RMO16 POWERA POWER ARM
SC 2 1 2 1 1 2 2 1 1

TSO - 2 2 4 3 5 4 1 1
PLO - - 2 2 2 4 3 1 1
PSO - 2 - 2 3 3 2 1 1
LSO - - - - 2 2 2 1 1
RMO - - - - - 1 1 1 1

POWERA - - - - 1 1 - 1 1
POWER - - - - - - - - 1

ARM - - - - - - - 1 -

Figure B.0.a: FSM node count summary.
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B.1 Upstream MCMs

PPO
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.1.a: MOSTs for Upstream SC

PPO
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST — XS XM XS

mfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.1.b: MOSTs for Upstream TSO

PPO
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS XS XS
PO ST — XS XM XS

mfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.1.c: MOSTs for Upstream PLO

PPO
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST — XS — XS

mfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.1.d: MOSTs for Upstream PSO

PPO
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS XS XS
PO ST — XS — XS

mfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.1.e: MOSTs for Upstream LSO

PPO
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS — XS
PO ST — XS — XS

mfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.1.f: MOSTs for Upstream RMO
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PPO
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS — XS
PO ST — XS — XS

lwsync
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST — XS XN XS

sync
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.1.g: MOSTs for Upstream POWERA

PPO
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — — —
PO ST — — — —

lwsync
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST — — XN XN
PO LD XS XS XS XS
PO ST — — XN XN

sync
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.1.h: MOSTs for Upstream POWER

PPO
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — — —
PO ST — — — —

dmb
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.1.i: MOSTs for Upstream ARM
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B.2 Downstream MCMs

PPO
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST — XS XM XS

msfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST — XS XS XS

mlfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XM XS

mfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.2.a: MOSTs for Downstream TSO

PPO
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS XS XS
PO ST — XS XM XS

msfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS XS XS
PO ST — XS XS XS

mlfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XM XS

mfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.2.b: MOSTs for Downstream PLO

PPO
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST — XS — XS

msfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST — XS XS XS

mlfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS — XS

mfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.2.c: MOSTs for Downstream PSO

PPO
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS XS XS
PO ST — XS — XS

msfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS XS XS
PO ST — XS XS XS

mlfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS — XS

mfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.2.d: MOSTs for Downstream LSO
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PPO
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS — XS
PO ST — XS — XS

msfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS XS XS
PO ST — XS XS XS

mlfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS — XS

mfence
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.2.e: MOSTs for Downstream RMO

PPO
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS — XS
PO ST — XS — XS

fence LL SS
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS — XS
PO ST — XS XS XS

fence LL LS SS
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST — XS XS XS

fence SL SS
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS — XS
PO ST XS XS XS XS

fence SS
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS — XS
PO ST — XS XS XS

fence LS SL
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS XS XS
PO ST XS XS — XS

fence LL SL SS
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS — XS
PO ST XS XS XS XS

fence LL LS SL SS
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

fence LL
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS — XS
PO ST — XS — XS

fence LS SL SS
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS XS XS
PO ST XS XS XS XS

fence LS
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS XS XS
PO ST — XS — XS

fence LS SS
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS XS XS
PO ST — XS XS XS

fence SL
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS — XS
PO ST XS XS — XS

fence LL LS
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST — XS — XS

fence LL LS SL
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS — XS

fence LL SL
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS — XS
PO ST XS XS — XS

Figure B.2.f: MOSTs for Downstream RMO16

PPO
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS — XS
PO ST — XS — XS

lwsync
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST — XS XN XS

sync
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.2.g: MOSTs for Downstream POWERA

PPO
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — — —
PO ST — — — —

lwsync
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST — — XN XN
PO LD XS XS XS XS
PO ST — — XN XN

sync
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.2.h: MOSTs for Downstream POWER
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PPO
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — — —
PO ST — — — —

dmb
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.2.i: MOSTs for Downstream ARM
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B.3 SC Upstream, TSO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — — —
PO ST XS — XS —

Figure B.3.a: PPO of
(Upstream SC - Down-
stream TSO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld ld 0
0 SSSS SSSS SS-- SS-- st st 1
1 SSSS SSSS SS-- SSS- ld mlfence; ld 0
1 SSSS SSSS SS-- SSS- st st 1

Figure B.3.b: FSM Transition Table

SC -> TSO

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   S  - 

st/st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

ld/mlfence;ldst/st

ld/ld

Figure B.3.c: FSM
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B.4 SC Upstream, PLO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD XS — — —
PO ST XS — XS —

Figure B.4.a: PPO of
(Upstream SC - Down-
stream PLO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS*- SS*- ld mlfence; ld 0
0 SSSS SSSS SS*- SS*- st st 0

Figure B.4.b: FSM Transition Table

SC -> PLO (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   -  - 

ld/ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   S  - 

st/st

ld/mlfence;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   S  - 

st/stld/mlfence;ld

st/st

ld/mlfence;ld

st/st

Figure B.4.c: FSM (Pre-
minimization)

SC -> PLO (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   *  - 
st  S   S   *  - 

ld/mlfence;ldst/st

Figure B.4.d: FSM
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B.5 SC Upstream, PSO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — — —
PO ST XS — XS —

Figure B.5.a: PPO of
(Upstream SC - Down-
stream PSO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SSSS ld mlfence; ld 1
0 SSSS SSSS SS-- SSSS st msfence; st 0
1 SSSS SSSS SS-- SS-S ld ld 1
1 SSSS SSSS SS-- SS-S st msfence; st 0

Figure B.5.b: FSM Transition Table

SC -> PSO (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   S  S 

st/msfence;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  S 

ld/mlfence;ld st/msfence;st

ld/ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/st

ld/ld

Figure B.5.c: FSM (Pre-
minimization)

SC -> PSO (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   S  S 

st/msfence;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  S 

ld/mlfence;ld st/msfence;st

ld/ld

Figure B.5.d: FSM
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B.6 SC Upstream, LSO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD XS — — —
PO ST XS — XS —

Figure B.6.a: PPO of
(Upstream SC - Down-
stream LSO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS*- SS*S ld mlfence; ld 0
0 SSSS SSSS SS*- SS*S st msfence; st 0

Figure B.6.b: FSM Transition Table

SC -> LSO (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   S  S 

st/msfence;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   -  S 

ld/mlfence;ld

ld/mlfence;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   S  S 

st/msfence;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   -  - 

ld/ld

ld/mlfence;ld

st/st

ld/mlfence;ld

st/msfence;st

Figure B.6.c: FSM (Pre-
minimization)

SC -> LSO (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   *  - 
st  S   S   *  S 

ld/mlfence;ldst/msfence;st

Figure B.6.d: FSM
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B.7 SC Upstream, RMO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD XS — XS —
PO ST XS — XS —

Figure B.7.a: PPO of
(Upstream SC - Down-
stream RMO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS** SS** ld mlfence; ld 0
0 SSSS SSSS SS** SS** st msfence; st 0

Figure B.7.b: FSM Transition Table

SC -> RMO (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   S  S 

st/msfence;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  S 

ld/mlfence;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   S  S 

st/msfence;st

ld/mlfence;ldst/msfence;st

ld/mlfence;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  - 

ld/ld

st/msfence;st

ld/mlfence;ld

Figure B.7.c: FSM (Pre-
minimization)

SC -> RMO (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   *  * 
st  S   S   *  * 

ld/mlfence;ldst/msfence;st

Figure B.7.d: FSM
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B.8 SC Upstream, RMO16 Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD XS — XS —
PO ST XS — XS —

Figure B.8.a: PPO of
(Upstream SC - Down-
stream RMO16)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SSS- SSSS ld fence LL SL; ld 1
0 SSSS SSSS SSS- SSSS st fence SS; st 0
1 SSSS SSSS SSSS SS-S ld fence LL; ld 1
1 SSSS SSSS SSSS SS-S st fence LS SS; st 0

Figure B.8.b: FSM Transition Table

SC -> RMO16 (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   S  S 

st/fence_SS;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  S 

ld/fence_LL_SL;ld st/fence_LS_SS;st

ld/fence_LL;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   S  S 

ld/fence_SL;ld

st/fence_SS;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  - 

st/fence_LS;st

ld/fence_LL;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/st ld/ld

Figure B.8.c: FSM (Pre-
minimization)

SC -> RMO16 (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  S 

ld/fence_LL;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   S  S 

st/fence_LS_SS;stld/fence_LL_SL;ld

st/fence_SS;st

Figure B.8.d: FSM
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B.9 SC Upstream, POWERA Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD XS — XS —
PO ST XS — XS —

Figure B.9.a: PPO of
(Upstream SC - Down-
stream POWERA)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SSSS ld sync; ld 1
0 SSSS SSSS SS-- SSSS st sync; st 0
1 SSSS SSSS SSSS SS-- ld lwsync; ld 1
1 SSSS SSSS SSSS SS-- st lwsync; st 0

Figure B.9.b: FSM Transition Table

SC -> POWERA (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   S  S 

st/sync;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  - 

ld/sync;ld st/lwsync;st

ld/lwsync;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/st

ld/ld

Figure B.9.c: FSM (Pre-
minimization)

SC -> POWERA (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   S  S 

st/sync;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  - 

ld/sync;ldst/lwsync;st

ld/lwsync;ld

Figure B.9.d: FSM
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B.10 SC Upstream, POWER Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.10.a: PPO of
(Upstream SC - Down-
stream POWER)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS** SS** ld sync; ld 0
0 SSSS SSSS SS** SS** st sync; st 0

Figure B.10.b: FSM Transition Table

SC -> POWER (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   S  S 

st/sync;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  - 

ld/sync;ld st/sync;st

ld/sync;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/sync;st

ld/sync;ld

Figure B.10.c: FSM (Pre-
minimization)

SC -> POWER (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   *  * 
st  S   S   *  * 

st/sync;stld/sync;ld

Figure B.10.d: FSM
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B.11 SC Upstream, ARM Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST XS XS XS XS

Figure B.11.a: PPO of
(Upstream SC - Down-
stream ARM)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS** SS** ld dmb; ld 0
0 SSSS SSSS SS** SS** st dmb; st 0

Figure B.11.b: FSM Transition Table

SC -> ARM (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   S  S 

st/dmb;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  - 

ld/dmb;ldst/dmb;st

ld/dmb;ld st/dmb;st

ld/dmb;ld

Figure B.11.c: FSM (Pre-
minimization)

SC -> ARM (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   *  * 
st  S   S   *  * 

ld/dmb;ldst/dmb;st

Figure B.11.d: FSM
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B.12 TSO Upstream, PLO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD XS — — —
PO ST — — — —

Figure B.12.a: PPO of
(Upstream TSO - Down-
stream PLO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld ld 1
0 SSSS SSSS SS-- SS-- mfence mfence 0
0 SSSS SSSS SS-- SS-- st st 0
1 SSSS SSSS SSS- SS-- ld mlfence; ld 1
1 SSSS SSSS SSS- SS-- mfence mfence 0
1 SSSS SSSS SSS- SS-- st st 1

Figure B.12.b: FSM Transition Table

TSO -> PLO

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/stmfence/mfence

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   -  - 

ld/ldmfence/mfence

st/stld/mlfence;ld

Figure B.12.c: FSM
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B.13 TSO Upstream, PSO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — — —
PO ST — — XM —

Figure B.13.a: PPO of
(Upstream TSO - Down-
stream PSO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-M ld ld 0
0 SSSS SSSS SS-- SS-M mfence mfence 1
0 SSSS SSSS SS-- SS-M st msfence; st 0
1 SSSS SSSS SS-- SS-- ld ld 1
1 SSSS SSSS SS-- SS-- mfence mfence 1
1 SSSS SSSS SS-- SS-- st st 0

Figure B.13.b: FSM Transition Table

TSO -> PSO

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  M 

st/msfence;stld/ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/mfence st/st

mfence/mfenceld/ld

Figure B.13.c: FSM
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B.14 TSO Upstream, LSO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD XS — — —
PO ST — — XM —

Figure B.14.a: PPO of
(Upstream TSO - Down-
stream LSO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld ld 3
0 SSSS SSSS SS-- SS-- mfence mfence 0
0 SSSS SSSS SS-- SS-- st st 1
1 SSSS SSSS SS-- SS-M ld ld 2
1 SSSS SSSS SS-- SS-M mfence mfence 0
1 SSSS SSSS SS-- SS-M st msfence; st 1
2 SSSS SSSS SSS- SS-M ld mlfence; ld 2
2 SSSS SSSS SSS- SS-M mfence mfence 0
2 SSSS SSSS SSS- SS-M st msfence; st 2
3 SSSS SSSS SSS- SS-- ld mlfence; ld 3
3 SSSS SSSS SSS- SS-- mfence mfence 0
3 SSSS SSSS SSS- SS-- st st 2

Figure B.14.b: FSM Transition Table

TSO -> LSO

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  M 

st/msfence;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   -  M 

ld/ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/mfencest/msfence;stld/mlfence;ld

mfence/mfence

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   -  - 

st/st

ld/mlfence;ld

mfence/mfence

st/st

ld/ld

mfence/mfence

Figure B.14.c: FSM
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B.15 TSO Upstream, RMO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD XS — XS —
PO ST — — XM —

Figure B.15.a: PPO of
(Upstream TSO - Down-
stream RMO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld ld 2
0 SSSS SSSS SS-- SS-- mfence mfence 0
0 SSSS SSSS SS-- SS-- st st 1
1 SSSS SSSS SS-- SS-M ld ld 2
1 SSSS SSSS SS-- SS-M mfence mfence 0
1 SSSS SSSS SS-- SS-M st msfence; st 1
2 SSSS SSSS SSS* SS-* ld mlfence; ld 2
2 SSSS SSSS SSS* SS-* mfence mfence 0
2 SSSS SSSS SSS* SS-* st msfence; st 2

Figure B.15.b: FSM Transition Table

TSO -> RMO (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  - 

ld/mlfence;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   -  M 

st/msfence;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/mfence

st/msfence;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  M 

ld/mlfence;ld

mfence/mfence

st/msfence;st

ld/mlfence;ld

mfence/mfence

ld/ld

mfence/mfence

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  M 

st/st

ld/ld

mfence/mfence

st/msfence;st

Figure B.15.c: FSM (Pre-
minimization)

TSO -> RMO (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  * 
st  S   S   -  * 

ld/mlfence;ldst/msfence;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/mfence ld/ld

mfence/mfence

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  M 

st/st

ld/ld

mfence/mfence

st/msfence;st

Figure B.15.d: FSM
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B.16 TSO Upstream, RMO16 Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD XS — XS —
PO ST — — XM —

Figure B.16.a: PPO of
(Upstream TSO - Down-
stream RMO16)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SSSS SS-- ld fence LL; ld 0
0 SSSS SSSS SSSS SS-- mfence fence LL LS SL SS 2
0 SSSS SSSS SSSS SS-- st fence LS; st 4
1 SSSS SSSS SSSS SS-M ld fence LL; ld 1
1 SSSS SSSS SSSS SS-M mfence fence LL LS SL SS 2
1 SSSS SSSS SSSS SS-M st fence LS SS; st 4
2 SSSS SSSS SS-- SS-- ld ld 0
2 SSSS SSSS SS-- SS-- mfence fence LL LS SL SS 2
2 SSSS SSSS SS-- SS-- st st 3
3 SSSS SSSS SS-- SS-M ld ld 1
3 SSSS SSSS SS-- SS-M mfence fence LL LS SL SS 2
3 SSSS SSSS SS-- SS-M st fence SS; st 3
4 SSSS SSSS SSS- SS-M ld fence LL; ld 1
4 SSSS SSSS SSS- SS-M mfence fence LL LS SL SS 2
4 SSSS SSSS SSS- SS-M st fence SS; st 4

Figure B.16.b: FSM Transition Table

TSO -> RMO16

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  - 

ld/fence_LL;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   -  M 

st/fence_LS;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/fence_LL_LS_SL_SS

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  M 

ld/fence_LL;ld

st/fence_LS_SS;st

mfence/fence_LL_LS_SL_SS

ld/fence_LL;ld

st/fence_SS;st

mfence/fence_LL_LS_SL_SS

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  M 

ld/ld

st/fence_SS;st

mfence/fence_LL_LS_SL_SS

ld/ld

st/st

mfence/fence_LL_LS_SL_SS

Figure B.16.c: FSM
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B.17 TSO Upstream, POWERA Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD XS — XS —
PO ST — — XM —

Figure B.17.a: PPO of
(Upstream TSO - Down-
stream POWERA)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld ld 3
0 SSSS SSSS SS-- SS-- mfence sync 0
0 SSSS SSSS SS-- SS-- st st 1
1 SSSS SSSS SS-- SS-M ld ld 2
1 SSSS SSSS SS-- SS-M mfence sync 0
1 SSSS SSSS SS-- SS-M st sync; st 1
2 SSSS SSSS SSSS SS-M ld lwsync; ld 2
2 SSSS SSSS SSSS SS-M mfence sync 0
2 SSSS SSSS SSSS SS-M st sync; st 1
3 SSSS SSSS SSSS SS-- ld lwsync; ld 3
3 SSSS SSSS SSSS SS-- mfence sync 0
3 SSSS SSSS SSSS SS-- st lwsync; st 1

Figure B.17.b: FSM Transition Table

TSO -> POWERA

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/sync

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  M 

st/st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  - 

ld/ld

mfence/sync

st/sync;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  M 

ld/ld

mfence/sync

st/sync;st

ld/lwsync;ld

mfence/sync

st/lwsync;st

ld/lwsync;ld

Figure B.17.c: FSM
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B.18 TSO Upstream, POWER Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST — XS XM XS

Figure B.18.a: PPO of
(Upstream TSO - Down-
stream POWER)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS** SS-* ld sync; ld 0
0 SSSS SSSS SS** SS-* mfence sync 0
0 SSSS SSSS SS** SS-* st sync; st 0

Figure B.18.b: FSM Transition Table

TSO -> POWER (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  M 

st/sync;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  - 

ld/sync;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/sync

st/sync;st

ld/sync;ld

mfence/sync

st/sync;st

ld/sync;ld

mfence/sync

Figure B.18.c: FSM (Pre-
minimization)

TSO -> POWER (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   *  * 
st  S   S   -  * 

st/sync;stmfence/syncld/sync;ld

Figure B.18.d: FSM
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B.19 TSO Upstream, ARM Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST — XS XM XS

Figure B.19.a: PPO of
(Upstream TSO - Down-
stream ARM)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS** SS-* ld dmb; ld 0
0 SSSS SSSS SS** SS-* mfence dmb 0
0 SSSS SSSS SS** SS-* st dmb; st 0

Figure B.19.b: FSM Transition Table

TSO -> ARM (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  - 

ld/dmb;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/dmb

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  M 

st/dmb;st

ld/dmb;ld

mfence/dmb

st/dmb;st

ld/dmb;ld

mfence/dmb

st/dmb;st

Figure B.19.c: FSM (Pre-
minimization)

TSO -> ARM (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   *  * 
st  S   S   -  * 

mfence/dmbld/dmb;ldst/dmb;st

Figure B.19.d: FSM
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B.20 PLO Upstream, PSO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — — —
PO ST — — XM —

Figure B.20.a: PPO of
(Upstream PLO - Down-
stream PSO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-M ld ld 0
0 SSSS SSSS SS-- SS-M mfence mfence 1
0 SSSS SSSS SS-- SS-M st msfence; st 0
1 SSSS SSSS SS-- SS-- ld ld 1
1 SSSS SSSS SS-- SS-- mfence mfence 1
1 SSSS SSSS SS-- SS-- st st 0

Figure B.20.b: FSM Transition Table

PLO -> PSO

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  M 

st/msfence;stld/ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/mfence st/st

mfence/mfenceld/ld

Figure B.20.c: FSM
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B.21 PLO Upstream, LSO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — — —
PO ST — — XM —

Figure B.21.a: PPO of
(Upstream PLO - Down-
stream LSO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-M ld ld 0
0 SSSS SSSS SS-- SS-M mfence mfence 1
0 SSSS SSSS SS-- SS-M st msfence; st 0
1 SSSS SSSS SS-- SS-- ld ld 1
1 SSSS SSSS SS-- SS-- mfence mfence 1
1 SSSS SSSS SS-- SS-- st st 0

Figure B.21.b: FSM Transition Table

PLO -> LSO

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  M 

st/msfence;stld/ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/mfence st/st

mfence/mfenceld/ld

Figure B.21.c: FSM
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B.22 PLO Upstream, RMO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — XS —
PO ST — — XM —

Figure B.22.a: PPO of
(Upstream PLO - Down-
stream RMO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld ld 1
0 SSSS SSSS SS-- SS-- mfence mfence 0
0 SSSS SSSS SS-- SS-- st st 1
1 SSSS SSSS SS-* SS-* ld ld 1
1 SSSS SSSS SS-* SS-* mfence mfence 0
1 SSSS SSSS SS-* SS-* st msfence; st 1

Figure B.22.b: FSM Transition Table

PLO -> RMO (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  S 
st  S   S   -  - 

ld/ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/mfence

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  M 

st/msfence;st

ld/ld

mfence/mfence

st/stmfence/mfence

st/msfence;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  S 
st  S   S   -  M 

ld/ld

mfence/mfence

st/msfence;st

ld/ld

Figure B.22.c: FSM (Pre-
minimization)

PLO -> RMO (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/mfence

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  * 
st  S   S   -  * 

ld/ld st/stmfence/mfence

st/msfence;stld/ld

Figure B.22.d: FSM
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B.23 PLO Upstream, RMO16 Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — XS —
PO ST — — XM —

Figure B.23.a: PPO of
(Upstream PLO - Down-
stream RMO16)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-M ld ld 3
0 SSSS SSSS SS-- SS-M mfence fence LL LS SL SS 1
0 SSSS SSSS SS-- SS-M st fence SS; st 0
1 SSSS SSSS SS-- SS-- ld ld 2
1 SSSS SSSS SS-- SS-- mfence fence LL LS SL SS 1
1 SSSS SSSS SS-- SS-- st st 0
2 SSSS SSSS SS-S SS-- ld ld 2
2 SSSS SSSS SS-S SS-- mfence fence LL LS SL SS 1
2 SSSS SSSS SS-S SS-- st fence LS; st 0
3 SSSS SSSS SS-S SS-M ld ld 3
3 SSSS SSSS SS-S SS-M mfence fence LL LS SL SS 1
3 SSSS SSSS SS-S SS-M st fence LS SS; st 0

Figure B.23.b: FSM Transition Table

PLO -> RMO16

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  S 
st  S   S   -  M 

ld/ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  M 

st/fence_LS_SS;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/fence_LL_LS_SL_SS

ld/ld

st/fence_SS;st

mfence/fence_LL_LS_SL_SSst/st

mfence/fence_LL_LS_SL_SS

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  S 
st  S   S   -  - 

ld/ld

st/fence_LS;st

mfence/fence_LL_LS_SL_SS

ld/ld

Figure B.23.c: FSM
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B.24 PLO Upstream, POWERA Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — XS —
PO ST — — XM —

Figure B.24.a: PPO of
(Upstream PLO - Down-
stream POWERA)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld ld 2
0 SSSS SSSS SS-- SS-- mfence sync 0
0 SSSS SSSS SS-- SS-- st st 1
1 SSSS SSSS SS-* SS-M ld ld 1
1 SSSS SSSS SS-* SS-M mfence sync 0
1 SSSS SSSS SS-* SS-M st sync; st 1
2 SSSS SSSS SS-S SS-- ld ld 2
2 SSSS SSSS SS-S SS-- mfence sync 0
2 SSSS SSSS SS-S SS-- st lwsync; st 1

Figure B.24.b: FSM Transition Table

PLO -> POWERA (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/sync

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  S 
st  S   S   -  - 

ld/ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  M 

st/st

mfence/sync

ld/ld

st/lwsync;st

mfence/sync

st/sync;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  S 
st  S   S   -  M 

ld/ld

mfence/sync

st/sync;st

ld/ld

Figure B.24.c: FSM (Pre-
minimization)

PLO -> POWERA (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/sync

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  S 
st  S   S   -  - 

ld/ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  * 
st  S   S   -  M 

st/st

mfence/sync

ld/ld

st/lwsync;st

mfence/sync

st/sync;stld/ld

Figure B.24.d: FSM
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B.25 PLO Upstream, POWER Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS XS XS
PO ST — XS XM XS

Figure B.25.a: PPO of
(Upstream PLO - Down-
stream POWER)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-* SS-* ld sync; ld 0
0 SSSS SSSS SS-* SS-* mfence sync 0
0 SSSS SSSS SS-* SS-* st sync; st 0

Figure B.25.b: FSM Transition Table

PLO -> POWER (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/sync

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  M 

st/sync;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  S 
st  S   S   -  - 

ld/sync;ld

mfence/sync

st/sync;st

ld/sync;ld

mfence/sync

st/sync;st

ld/sync;ld

Figure B.25.c: FSM (Pre-
minimization)

PLO -> POWER (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  * 
st  S   S   -  * 

st/sync;stld/sync;ldmfence/sync

Figure B.25.d: FSM
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B.26 PLO Upstream, ARM Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS XS XS
PO ST — XS XM XS

Figure B.26.a: PPO of
(Upstream PLO - Down-
stream ARM)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-* SS-* ld dmb; ld 0
0 SSSS SSSS SS-* SS-* mfence dmb 0
0 SSSS SSSS SS-* SS-* st dmb; st 0

Figure B.26.b: FSM Transition Table

PLO -> ARM (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  S 
st  S   S   -  - 

ld/dmb;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  M 

st/dmb;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/dmb

ld/dmb;ld

st/dmb;st

mfence/dmb

ld/dmb;ld

st/dmb;st

mfence/dmb

Figure B.26.c: FSM (Pre-
minimization)

PLO -> ARM (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  * 
st  S   S   -  * 

mfence/dmbld/dmb;ldst/dmb;st

Figure B.26.d: FSM
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B.27 PSO Upstream, PLO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD XS — — —
PO ST — — — —

Figure B.27.a: PPO of
(Upstream PSO - Down-
stream PLO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld ld 1
0 SSSS SSSS SS-- SS-- mfence mfence 0
0 SSSS SSSS SS-- SS-- st st 0
1 SSSS SSSS SSS- SS-- ld mlfence; ld 1
1 SSSS SSSS SSS- SS-- mfence mfence 0
1 SSSS SSSS SSS- SS-- st st 1

Figure B.27.b: FSM Transition Table

PSO -> PLO

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/stmfence/mfence

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   -  - 

ld/ldmfence/mfence

st/stld/mlfence;ld

Figure B.27.c: FSM
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B.28 PSO Upstream, LSO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD XS — — —
PO ST — — — —

Figure B.28.a: PPO of
(Upstream PSO - Down-
stream LSO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld ld 1
0 SSSS SSSS SS-- SS-- mfence mfence 0
0 SSSS SSSS SS-- SS-- st st 0
1 SSSS SSSS SSS- SS-- ld mlfence; ld 1
1 SSSS SSSS SSS- SS-- mfence mfence 0
1 SSSS SSSS SSS- SS-- st st 1

Figure B.28.b: FSM Transition Table

PSO -> LSO

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/stmfence/mfence

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   -  - 

ld/ldmfence/mfence

st/stld/mlfence;ld

Figure B.28.c: FSM
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B.29 PSO Upstream, RMO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD XS — XS —
PO ST — — — —

Figure B.29.a: PPO of
(Upstream PSO - Down-
stream RMO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SSSS SS-- ld mlfence; ld 0
0 SSSS SSSS SSSS SS-- mfence mfence 1
0 SSSS SSSS SSSS SS-- st msfence; st 2
1 SSSS SSSS SS-- SS-- ld ld 0
1 SSSS SSSS SS-- SS-- mfence mfence 1
1 SSSS SSSS SS-- SS-- st st 1
2 SSSS SSSS SSS- SS-- ld mlfence; ld 0
2 SSSS SSSS SSS- SS-- mfence mfence 1
2 SSSS SSSS SSS- SS-- st st 2

Figure B.29.b: FSM Transition Table

PSO -> RMO

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   -  - 

st/st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  - 

ld/mlfence;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/mfence

st/msfence;st

ld/mlfence;ld

mfence/mfence ld/ld

mfence/mfencest/st

Figure B.29.c: FSM
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B.30 PSO Upstream, RMO16 Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD XS — XS —
PO ST — — — —

Figure B.30.a: PPO of
(Upstream PSO - Down-
stream RMO16)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SSSS SS-- ld fence LL; ld 0
0 SSSS SSSS SSSS SS-- mfence fence LL LS SL SS 1
0 SSSS SSSS SSSS SS-- st fence LS; st 2
1 SSSS SSSS SS-- SS-- ld ld 0
1 SSSS SSSS SS-- SS-- mfence fence LL LS SL SS 1
1 SSSS SSSS SS-- SS-- st st 1
2 SSSS SSSS SSS- SS-- ld fence LL; ld 0
2 SSSS SSSS SSS- SS-- mfence fence LL LS SL SS 1
2 SSSS SSSS SSS- SS-- st st 2

Figure B.30.b: FSM Transition Table

PSO -> RMO16

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  - 

ld/fence_LL;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  - 
st  S   S   -  - 

st/fence_LS;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/fence_LL_LS_SL_SS

ld/fence_LL;ld

st/st

mfence/fence_LL_LS_SL_SS

ld/ld

st/stmfence/fence_LL_LS_SL_SS

Figure B.30.c: FSM
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B.31 PSO Upstream, POWERA Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD XS — XS —
PO ST — — — —

Figure B.31.a: PPO of
(Upstream PSO - Down-
stream POWERA)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SSSS SS-- ld lwsync; ld 0
0 SSSS SSSS SSSS SS-- mfence sync 1
0 SSSS SSSS SSSS SS-- st lwsync; st 1
1 SSSS SSSS SS-- SS-- ld ld 0
1 SSSS SSSS SS-- SS-- mfence sync 1
1 SSSS SSSS SS-- SS-- st st 1

Figure B.31.b: FSM Transition Table

PSO -> POWERA

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  - 

ld/lwsync;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/lwsync;st mfence/sync ld/ld

mfence/syncst/st

Figure B.31.c: FSM
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B.32 PSO Upstream, POWER Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST — XS — XS

Figure B.32.a: PPO of
(Upstream PSO - Down-
stream POWER)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS** SS-- ld sync; ld 0
0 SSSS SSSS SS** SS-- mfence sync 0
0 SSSS SSSS SS** SS-- st sync; st 0

Figure B.32.b: FSM Transition Table

PSO -> POWER (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  - 

ld/sync;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/sync st/sync;st ld/sync;ld

mfence/syncst/sync;st

Figure B.32.c: FSM (Pre-
minimization)

PSO -> POWER (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   *  * 
st  S   S   -  - 

st/sync;stld/sync;ldmfence/sync

Figure B.32.d: FSM
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B.33 PSO Upstream, ARM Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD XS XS XS XS
PO ST — XS — XS

Figure B.33.a: PPO of
(Upstream PSO - Down-
stream ARM)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS** SS-- ld dmb; ld 0
0 SSSS SSSS SS** SS-- mfence dmb 0
0 SSSS SSSS SS** SS-- st dmb; st 0

Figure B.33.b: FSM Transition Table

PSO -> ARM (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   S  S 
st  S   S   -  - 

ld/dmb;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/dmb;st mfence/dmb ld/dmb;ld

st/dmb;stmfence/dmb

Figure B.33.c: FSM (Pre-
minimization)

PSO -> ARM (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   *  * 
st  S   S   -  - 

mfence/dmbld/dmb;ldst/dmb;st

Figure B.33.d: FSM
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B.34 LSO Upstream, RMO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — XS —
PO ST — — — —

Figure B.34.a: PPO of
(Upstream LSO - Down-
stream RMO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld ld 1
0 SSSS SSSS SS-- SS-- mfence mfence 0
0 SSSS SSSS SS-- SS-- st st 0
1 SSSS SSSS SS-S SS-- ld ld 1
1 SSSS SSSS SS-S SS-- mfence mfence 0
1 SSSS SSSS SS-S SS-- st msfence; st 0

Figure B.34.b: FSM Transition Table

LSO -> RMO

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/stmfence/mfence

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  S 
st  S   S   -  - 

ld/ld st/msfence;st mfence/mfence

ld/ld

Figure B.34.c: FSM
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B.35 LSO Upstream, RMO16 Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — XS —
PO ST — — — —

Figure B.35.a: PPO of
(Upstream LSO - Down-
stream RMO16)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld ld 1
0 SSSS SSSS SS-- SS-- mfence fence LL LS SL SS 0
0 SSSS SSSS SS-- SS-- st st 0
1 SSSS SSSS SS-S SS-- ld ld 1
1 SSSS SSSS SS-S SS-- mfence fence LL LS SL SS 0
1 SSSS SSSS SS-S SS-- st fence LS; st 0

Figure B.35.b: FSM Transition Table

LSO -> RMO16

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/stmfence/fence_LL_LS_SL_SS

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  S 
st  S   S   -  - 

ld/ld mfence/fence_LL_LS_SL_SS st/fence_LS;st

ld/ld

Figure B.35.c: FSM
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B.36 LSO Upstream, POWERA Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — XS —
PO ST — — — —

Figure B.36.a: PPO of
(Upstream LSO - Down-
stream POWERA)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld ld 1
0 SSSS SSSS SS-- SS-- mfence sync 0
0 SSSS SSSS SS-- SS-- st st 0
1 SSSS SSSS SS-S SS-- ld ld 1
1 SSSS SSSS SS-S SS-- mfence sync 0
1 SSSS SSSS SS-S SS-- st lwsync; st 0

Figure B.36.b: FSM Transition Table

LSO -> POWERA

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/syncst/st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  S 
st  S   S   -  - 

ld/ld st/lwsync;st mfence/sync

ld/ld

Figure B.36.c: FSM
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B.37 LSO Upstream, POWER Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS XS XS
PO ST — XS — XS

Figure B.37.a: PPO of
(Upstream LSO - Down-
stream POWER)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-* SS-- ld sync; ld 0
0 SSSS SSSS SS-* SS-- mfence sync 0
0 SSSS SSSS SS-* SS-- st sync; st 0

Figure B.37.b: FSM Transition Table

LSO -> POWER (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/syncst/sync;st

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  S 
st  S   S   -  - 

ld/sync;ld mfence/sync st/sync;st

ld/sync;ld

Figure B.37.c: FSM (Pre-
minimization)

LSO -> POWER (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  * 
st  S   S   -  - 

st/sync;stmfence/syncld/sync;ld

Figure B.37.d: FSM
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B.38 LSO Upstream, ARM Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS XS XS
PO ST — XS — XS

Figure B.38.a: PPO of
(Upstream LSO - Down-
stream ARM)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-* SS-- ld dmb; ld 0
0 SSSS SSSS SS-* SS-- mfence dmb 0
0 SSSS SSSS SS-* SS-- st dmb; st 0

Figure B.38.b: FSM Transition Table

LSO -> ARM (Non-minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  S 
st  S   S   -  - 

ld/dmb;ld

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/dmb;st mfence/dmb ld/dmb;ld

st/dmb;stmfence/dmb

Figure B.38.c: FSM (Pre-
minimization)

LSO -> ARM (Minimized)

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  * 
st  S   S   -  - 

mfence/dmbld/dmb;ldst/dmb;st

Figure B.38.d: FSM
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B.39 RMO Upstream, RMO16 Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — — —
PO ST — — — —

Figure B.39.a: PPO of
(Upstream RMO - Down-
stream RMO16)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld ld 0
0 SSSS SSSS SS-- SS-- mfence fence LL LS SL SS 0
0 SSSS SSSS SS-- SS-- st st 0

Figure B.39.b: FSM Transition Table

RMO -> RMO16

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/stld/ldmfence/fence_LL_LS_SL_SS

Figure B.39.c: FSM
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B.40 RMO Upstream, POWERA Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — — —
PO ST — — — —

Figure B.40.a: PPO of
(Upstream RMO - Down-
stream POWERA)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld ld 0
0 SSSS SSSS SS-- SS-- mfence sync 0
0 SSSS SSSS SS-- SS-- st st 0

Figure B.40.b: FSM Transition Table

RMO -> POWERA

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/stld/ldmfence/sync

Figure B.40.c: FSM
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B.41 RMO Upstream, POWER Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS — XS
PO ST — XS — XS

Figure B.41.a: PPO of
(Upstream RMO - Down-
stream POWER)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld sync; ld 0
0 SSSS SSSS SS-- SS-- mfence sync 0
0 SSSS SSSS SS-- SS-- st sync; st 0

Figure B.41.b: FSM Transition Table

RMO -> POWER

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/sync;stld/sync;ldmfence/sync

Figure B.41.c: FSM

241



B.42 RMO Upstream, ARM Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS — XS
PO ST — XS — XS

Figure B.42.a: PPO of
(Upstream RMO - Down-
stream ARM)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld dmb; ld 0
0 SSSS SSSS SS-- SS-- mfence dmb 0
0 SSSS SSSS SS-- SS-- st dmb; st 0

Figure B.42.b: FSM Transition Table

RMO -> ARM

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

mfence/dmbst/dmb;stld/dmb;ld

Figure B.42.c: FSM
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B.43 POWERA Upstream, RMO Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — — —
PO ST — — — —

Figure B.43.a: PPO of
(Upstream POWERA -
Downstream RMO)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld ld 0
0 SSSS SSSS SS-- SS-- lwsync mfence 0
0 SSSS SSSS SS-- SS-- sync mfence 0
0 SSSS SSSS SS-- SS-- st st 0

Figure B.43.b: FSM Transition Table

POWERA -> RMO

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/stsync/mfenceld/ldlwsync/mfence

Figure B.43.c: FSM
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B.44 POWERA Upstream, RMO16 Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — — —
PO ST — — — —

Figure B.44.a: PPO of
(Upstream POWERA -
Downstream RMO16)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld ld 0
0 SSSS SSSS SS-- SS-- lwsync fence LL LS SS 0
0 SSSS SSSS SS-- SS-- sync fence LL LS SL SS 0
0 SSSS SSSS SS-- SS-- st st 0

Figure B.44.b: FSM Transition Table

POWERA -> RMO16

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

sync/fence_LL_LS_SL_SSst/stlwsync/fence_LL_LS_SSld/ld

Figure B.44.c: FSM
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B.45 POWERA Upstream, POWER Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS — XS
PO ST — XS — XS

Figure B.45.a: PPO of
(Upstream POWERA -
Downstream POWER)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld sync; ld 0
0 SSSS SSSS SS-- SS-- lwsync sync 0
0 SSSS SSSS SS-- SS-- sync sync 0
0 SSSS SSSS SS-- SS-- st sync; st 0

Figure B.45.b: FSM Transition Table

POWERA -> POWER

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

st/sync;stlwsync/syncld/sync;ldsync/sync

Figure B.45.c: FSM
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B.46 POWERA Upstream, ARM Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD XS XS XS XS
AC ST XS XS XS XS
PO LD — XS — XS
PO ST — XS — XS

Figure B.46.a: PPO of
(Upstream POWERA -
Downstream ARM)

Input Output
State MOST Op. Op(s). Next State

0 SSSS SSSS SS-- SS-- ld dmb; ld 0
0 SSSS SSSS SS-- SS-- lwsync dmb 0
0 SSSS SSSS SS-- SS-- sync dmb 0
0 SSSS SSSS SS-- SS-- st dmb; st 0

Figure B.46.b: FSM Transition Table

POWERA -> ARM

    cld cst ld st
cld S   S   S  S 
cst S   S   S  S 
ld  S   S   -  - 
st  S   S   -  - 

lwsync/dmbst/dmb;stsync/dmbld/dmb;ld

Figure B.46.c: FSM
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B.47 POWER Upstream, ARM Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — — —
PO ST — — — —

Figure B.47.a: PPO of
(Upstream POWER -
Downstream ARM)

Input Output
State MOST Op. Op(s). Next State

0 ---- ---- ---- ---- ld ld 0
0 ---- ---- ---- ---- lwsync dmb 0
0 ---- ---- ---- ---- sync dmb 0
0 ---- ---- ---- ---- st st 0

Figure B.47.b: FSM Transition Table

POWER -> ARM

    cld cst ld st
cld -   -   -  - 
cst -   -   -  - 
ld  -   -   -  - 
st  -   -   -  - 

st/stlwsync/dmbld/ldsync/dmb

Figure B.47.c: FSM
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B.48 ARM Upstream, POWER Downstream

PPO Diff.
PO LD BC LD PO ST BC ST

AC LD — — — —
AC ST — — — —
PO LD — — — —
PO ST — — — —

Figure B.48.a: PPO of
(Upstream ARM - Down-
stream POWER)

Input Output
State MOST Op. Op(s). Next State

0 ---- ---- ---- ---- dmb sync 0
0 ---- ---- ---- ---- ld ld 0
0 ---- ---- ---- ---- st st 0

Figure B.48.b: FSM Transition Table

ARM -> POWER

    cld cst ld st
cld -   -   -  - 
cst -   -   -  - 
ld  -   -   -  - 
st  -   -   -  - 

st/stdmb/syncld/ld

Figure B.48.c: FSM
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