: Defending
Against Memory
Consistency Model
7 Mismatches in
I Heterogeneous
W\ =8 Architectures

Daniel Lustig, Caroline
Trippel, Michael Pellauer,
and Margaret Martonosi

http://commons.wikimedia.org/wiki/File:Scudamorearmor2.jpg

Motivation: MCMs Are Still Difficult!

* Are memory consistency models (MCMs) a solved
problem? Not entirely!

— Proper MCM specification:

— MCM-aware compilation:

— Cross-MCM dynamic
binary translation:

Qualcomm Snapdragon 810

* With the emergence of architecturally
heterogeneous (and hence MCM-heterogeneous)
systems, the problems are only going to get worse!

Motivation: MCMs Are Still Difficult!

* Are memory consistency models (MCMs) a solved
problem? Not entirely!

— Proper MCM specification:

— MCM-aware compilation:

— Cross-MCM dynamic
binary translation:

Qualcomm Snapdragon 810

* With the emergence of architecturally
heterogeneous (and hence MCM-heterogeneous)
systems, the problems are only going to get worse!

ArMOR Overview

* Goal: Take the guesswork out of specifying
and analyzing memory consistency models
(MCMs) within compilers, emulators, etc.

e Contributions:
1. MOST: precise, portable, general-purpose

2. MOST methodology that
enables flexible compilation/translation/etc.

3. Case study: automatic generation of
modules (“shims”)

Outline Total store Ordering (TSO)

* Why are MCMs inherently too
complicated for simplified
specifications like these?

ld. Ld.
e ArMOR solution: MOSTs Same Diff.
Addr. Addr.

— Memory Ordering
Specification Tables

e Case study: cross-MCM dynamic binary
translation

//
o |

A

What Problems Can MCMs Cause?

public class Counter {
private int ¢ = 0;

public void increment() {
(this) { c++; }

) Wrap “c++;” in a mutex
to make it thread-safe

What if Mutexes Fail to Address MCMs?
Thread 0 Thread 1

ldr r1,[r2] (rl=0)
add rl,rl,1 (ri1=1)
str r1,[r2] (c=1) | 1dr r1,[r2] (ri1=1)

add rl,rl,1 (ri1=2)
(mutex release) str r1,[r2] (c=2)

(mutex acquire)

What if Mutexes Fail to Address MICMs?

What if hardware Thread 1
dynamically reorders
the acquire and the

subsequent load?

(mutex acquire)

v

str rl,[r2] (c=1) | 1dr r1,[r2] (ri=1)
l add rl,rl,1 (ri1=2)

(mutex r‘@ str rl,[r2] (c=2)

What if Mutexes Fail to Address MICMs?

What if hardware ldr rl1,[r2] (ri=e)
dynamically reorders
the acquire and the

subsequent load?

(mutex acquire)

‘ '
str rl,[r2] (c=1)
l add rl,rl,1 (ri=1)

(mutex r‘@ str r1,[r2] (c=1)

Mutexes Need Fences...But Which Ones?

Thread O Thread 1

ldr r1,[r2] (rl=0)
add rl,rl,1 (ri1=1)
str r1,[r2] (c=1) | 1dr r1,[r2] (ri1=1)

add rl,rl,1 (ri1=2)
(mutex release) str r1,[r2] (c=2)

(mutex acquire)

e~

Mutexes Need Fences...But Which Ones?
Need to choose fences with

“any—2>store” and “load—=2>any” semantics
ldr r1,[r2] (rl=0)
add rl,rl,1 (ri1=1)
str r1,[r2] (c=1) | 1dr r1,[r2] (ri1=1)
add rl,rl,1 (rl=2)

(mutex h5£iiiii// str rl,[r2] (c=2)
(Source: Google .« oo

ART Compiler)

(mutex acquire)

The MCM Analysis Guessing Game

Requirements
of Acquire
Semantics:

(Source: Google
ART Compiler)

/
E u

A

* Q: How to compile
for ARM?

* Consider two options:

Option 1: Option 2:
dmb ishld dmb ish

vV | V
vV | V

The MCM Analysis Guessing Game

Requirements
of Acquire
Semantics:

(Source: Google
ART Compiler)

Although “dmb 1shld”
looks sufficient, it actually
may be too weak! But why?

Option 2:
dmb ish

vV | V
vV | V

.

Why Low-Level MCM Details Matter
The store happens Thread 1

before the load only
it the orderings (mut o
are transitive mutex E1CCIU1 e

str r1,[r2] (c=1)1dr r1,[r2] (ri=1)

v

(mutex nsiiiiii//

Why Low-Level MCM Details Matter
The store happens Thread 1

before the load only
it the orderings (mut o
are transitive mutex acquire

str rl,[r2] (c=1) | 1dr r1,[r2] (ri=1)

On ARM, fences must
be “cumulative” to
enforce transitivity

(mutex release)

Why Low-Level MCENESEE o i

The store happens fence which has
before the load only “load>any”

if the orderings semantics

are transitive
fence(load)

str rl,[r2] (c=1) | 1dr r1,[r2] (ri1=1)
fence(any)
On ARM, fences must

be “cumulative” to
enforce transitivity

(mutex release)

ArMOR: Memory Ordering
Specification Tables (MOSTs)

Requirements Option 1: Option 2:
of Acquire dmb ishld dmb ish
B

Ld St

Semantics:
fence(load—=2>any)

Key ArMOR insight: encode this
kind of information directly into
the specification tables

ArMOR: Memory Ordering

Hardware vendors are still responsible for
providing correct and precise specifications! _

fence(load—=2>any) (V4 (V4 (V4
(V4 v
— ‘/s ‘/s

v
v

v
v

Key ArMOR insight: encode this

kind of information directly into
the specification tables

% Lustig et al., “ArMOR: Defending Against MCM Mismatches...”

ArMOR: Memory Ordering

Specification Tables (MOSTs)

Requirements
of Acquire

Semantics:
fence(load—=2>any)

v
v

v
v

MOSTs
make it
v | v clear why
option 1
may be

insufficient
Key ArMOR insight:encoae tnis
kind of information directly into

the specification tables

e~

Lustig et al.,

“ArMOR: Defending Against MCM Mismatches...”

Defining MCMs as Sets of MOSTs

e Each MCM is defined
by its MOSTS:

— PPO (default orderings)
— Fences
— Dependencies

e MOSTs enable

automated, algorithmic
analysis/comparison,

o

/
o |

A

Power Memory Model

What are MOSTs Good For?

* To compile/map/JIT/translate/etc. from one
MCM to another, need to be able to:

— Compare MOSTs (,<,=,%,2,>)
— Do MOST Arithmetic (+, -)

* ArMOR makes these analyses algorithmic!

Seq. Cst. zSeries “SC — zSeries”

B Ld Ld. B Ld. Ld. B Ld Ld.
Same Diff. . Same Diff. . Same Diff.
Addr. Addr. Addr. Addr. Addr. Addr.

Case Study: Dynamic MCM Translation

A Translator
compiled “Shim” |
for MCM A '

* Benefits: Performance/Energy/etc. [Venkat, ISCA’14]

* Challenges: differences in opcodes, memory
layouts, calling conventions, etc. [DeVuyst, ASPLOS '12]

* Most existing emulators/translators ignore
MCMs and hence simply can’t do this today!

e~

Case Study: Dynamic MCM Translation

Seq. Cst. Code,{Shim }% TSO Code

Store [x] € 1

Load [y] =2 rl

Load [z] =2 r2

Store [x] € 1

Load [y] =2 rl

Load [z] =2 r2

Resulting code should behave as if

it were sequentially consistent

Case Study: Dynamic MCM Translation

ArMOR shim FSMs are automatically
generated for any pairing of MCMs

Id/Id

State O

ld/mfence:ld

m

State 1

U

st/st

-

e~

Lustig et al., “ArMOR: Defending Against MCM Mismatches...”

ArMOR Breadth of Applicability

* Translating from SC to TSO is just one example...

TSO

SC

ArMOR Breadth of Applicability

 ArMOR makes all of these scenarios possible!

TSO PLO PSO LSO RMO RMO16 POWERA | POWER ARM
TSO .v - .~ = G
G | D= @
PLO - -] == 1] D= =
= | = | =
PSO A5 T Dy I o= Eo=
Dy DS ‘2. @ =
LSO D Z% e (T) G o= :
G GiiD,
POWERA o= o= o= o=
POWER - - - - - - o=
ARM - - - - - - - D -

e~

ArMOR Breadth of Applicability

* ArMOR makes all of these scenarios possible!

TSO PLO PSO LSO RMO RMO16 POWERA | POWER ARM
TSO .v - . ~ = G
G | D= @
"‘M - q oo , - = B
PLO - - - ' n D= =
= | = | =
PSO A5 T Dy I o= Eo=
Dy DS ‘2. @ =
LSO D Z% e (T) G o= :
G GiiD,
POWERA o= o= o= o=
POWER - - - - - - o=
ARM - - - - - - - D -

e~

Software Shim Performance Analysis

* Implemented using
Intel Pin

Software Shims, SC --> TSO

[EEY
o

* Three shim designs:
— Naive/Stateless

— Stateful

— Stateful + ISA assist:

 ignore thread-private
and DRF accesses

e PARSEC benchmarks

Normalized Runtime
O rr N W & U1 O N 00 O

Stateless Stateful ISA Assist

Hardware Shim Performance Analysis

* Small FSMs placed into issue queue of gem5
simulator out-of-order pipeline

* Takeaway: low area/performance overhead,
easily adapts to any SW/HW combination!

Sequentially Consistent Software, varying Hardware

2.0
1.5
1.0
0.5
0.0

Normalized Runtime

LSO PLO PSO TSO
Hardware MICM

Conclusion

* MCMs are not a solved problem, but ArMOR is a
major step towards improving the situation

e ArMOR’s MOST framework enables systematic
and algorithmic MCM analysis

* ArMOR adds precision to existing use cases
(e.g., compiler analysis) and enables forward-
looking use cases (e.g., inter-MCM translation)

* Easily adapts to any HW/SW combination or any
use case, even those which don’t yet exist!

e~

: Defending
Against Memory

i\ % Consistency Model
Source code and Mismatches in
>4 page gallery of Heterogeneous
MOSTs and shims: .

www.princeton.edu/ Architectures

Daniel Lustig, Caroline
Trippel, Michael Pellauer,
and Margaret Martonosi

http://cornmgps:\ivikin.\edg.o'r-g/wﬁ(i/.FiIe‘:Scﬁﬂamorearmorz.jp'

