
Background: Basics of our Approach



Microarchitectural Consistency Verification
▪Microarch. enforces ISA-level MCM through many small orderings

• In-order fetch/commit

• FIFO store buffers

• Coherence protocol

• …

▪Difficult to ensure that these

orderings always enforce the

required orderings Coherence Protocol (SWMR, DVI, etc.)

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

▪ Designs may also be complicated by optimizations (speculative load 
reordering, early fence retirement, OoO execution), or novel organization 
(heterogeneity)



Does hardware correctly implement ISA MCM?

Coherence Protocol (SWMR, DVI, etc.)

Microarchitecture

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

SC/TSO/RISC-V MCM?

?



Does hardware correctly implement ISA MCM?

Coherence Protocol (SWMR, DVI, etc.)

Microarchitecture

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

SC/TSO/RISC-V MCM?

?

Litmus Test

(for the litmus test)



Does hardware correctly implement ISA MCM?

Coherence Protocol (SWMR, DVI, etc.)

Microarchitecture

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

SC/TSO/RISC-V MCM?

?

Observable Unobservable

Permitted OK OK

Forbidden BUG OK

Microarch. analysis
Instruction 
level analysis of 
litmus test

Litmus Test

(for the litmus test)



Does hardware correctly implement ISA MCM?

Coherence Protocol (SWMR, DVI, etc.)

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

SC/TSO/RISC-V MCM?

?

Observable Unobservable

Permitted OK OK

Forbidden BUG OK

Microarch. analysis
Instruction 
level analysis of 
litmus test

Litmus Test

(for the litmus test)

Microarchitecture Specification in μSpec DSL

Axiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
AddEdge ((i1, Fetch), (i2, Fetch), "PO").

Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch)) =>
AddEdge ((i1, Execute), (i2, Execute), "").



Verifying a Single Litmus Test with the Check Suite

Coherence Protocol (SWMR, DVI, etc.)

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Microarchitectural happens-before (µhb) graphs

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Microarchitecture Specification in μSpec DSL

Litmus Test

Axiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
AddEdge ((i1, Fetch), (i2, Fetch), "PO").

Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch)) =>
AddEdge ((i1, Execute), (i2, Execute), "").



Microarchitectural Consistency Verification with Check

▪Early stage, design-time verification

▪Key Idea: Model executions as µhb graphs

• Nodes: Microarchitectural events or pipeline stages

• Edges: Happens-before relationships between nodes

▪Automatic exhaustive enumeration of all possible litmus test executions

• Cyclic Graph → Unobservable execution

• Acyclic Graph → Observable execution

≥1 acyclic
(Observable)

0 acyclic
(Unobservable)

Permitted OK OK (Stricter than necessary)

Forbidden BUG OK



Microarchitectural Consistency Verification with Check

▪Early stage, design-time verification

▪Key Idea: Model executions as µhb graphs

• Nodes: Microarchitectural events or pipeline stages

• Edges: Happens-before relationships between nodes

▪Automatic exhaustive enumeration of all possible litmus test executions

• Cyclic Graph → Unobservable execution

• Acyclic Graph → Observable execution

≥1 acyclic
(Observable)

0 acyclic
(Unobservable)

Permitted OK OK (Stricter than necessary)

Forbidden BUG OK



Microarchitectural Consistency Verification with Check

▪Early stage, design-time verification

▪Key Idea: Model executions as µhb graphs

• Nodes: Microarchitectural events or pipeline stages

• Edges: Happens-before relationships between nodes

▪Automatic exhaustive enumeration of all possible litmus test executions

• Cyclic Graph → Unobservable execution

• Acyclic Graph → Observable execution

≥1 acyclic
(Observable)

0 acyclic
(Unobservable)

Permitted OK OK (Stricter than necessary)

Forbidden BUG OK



Litmus test-based verification

▪ Litmus tests: small parallel programs (4-8 instrs)

• Used to highlight memory model differences/features

• Typically there is one non-SC outcome of interest (e.g. r1 = 1, r2 = 0 for mp)

▪Different litmus tests associated with different ISA models

• ISA memory model often characterized by their Permitted and Forbidden non-SC 
litmus test outcomes

• e.g. TSO litmus test suite, Power litmus test suite, ARM litmus test suite

▪Why litmus test-based verification?

• Focus verification on the scenarios most likely to exhibit bugs, but…

• …litmus test-based verification is incomplete (i.e. won’t catch all bugs)

• PipeProof [Manerkar et al. MICRO 2018] solves this problem! (all-program verification)



Some Example Litmus Tests

Thread 0 Thread 1

i1: Store [x]  1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

co-mp (mp with one addr)

Thread 0 Thread 1

i1: Store [x]  1
i2: Store [y]  1

i3: r1 = Load [y]
i4: r2 = Load [x]

SC Forbids: r1=1, r2=0

mp (Message Passing)

Thread 0 Thread 1

i1: Store [x]  1
i2: r1 = Load [y]

i3: Store [y]  1
i4: r2 = Load [x]

SC Forbids: r1=0, r2=0

sb (Store Buffering)

Thread 0 Thread 1 Thread 2 Thread 3

i1: Store [x]  1 i2: Store [y]  1 i3: r1 = Load [x]
i4: r2 = Load [y]

i5: r1 = Load [y]
i6: r2 = Load [x]

SC Forbids: r1=1, r2=0, r3=1, r4=0

iriw (Independent Reads, Independent Writes)



Other things to note

▪Check can handle heterogeneous parallelism (not covered today)

▪Check can handle microarch. optimizations like speculative execution

▪Different flows into and out of tools over the years

• Originally: uspec DSL => custom solver (written in Gallina)

− runtimes of seconds/minutes for a single test

• More recently:

− input specifications in Alloy (for CheckMate tool)

− µspec compiled into Z3 formula (in progress)

▪ Solver’s search for a satisfying assignment == search for acyclic graph


