
Background: Basics of our Approach



Microarchitectural Consistency Verification
▪Microarch. enforces ISA-level MCM through many small orderings

• In-order fetch/commit

• FIFO store buffers

• Coherence protocol

• …

▪Difficult to ensure that these

orderings always enforce the

required orderings Coherence Protocol (SWMR, DVI, etc.)
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▪ Designs may also be complicated by optimizations (speculative load 
reordering, early fence retirement, OoO execution), or novel organization 
(heterogeneity)



Does hardware correctly implement ISA MCM?
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Microarchitecture Specification in μSpec DSL

Axiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
AddEdge ((i1, Fetch), (i2, Fetch), "PO").

Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch)) =>
AddEdge ((i1, Execute), (i2, Execute), "").



Verifying a Single Litmus Test with the Check Suite

Coherence Protocol (SWMR, DVI, etc.)
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Microarchitecture Specification in μSpec DSL

Litmus Test

Axiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
AddEdge ((i1, Fetch), (i2, Fetch), "PO").

Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch)) =>
AddEdge ((i1, Execute), (i2, Execute), "").



Microarchitectural Consistency Verification with Check

▪Early stage, design-time verification

▪Key Idea: Model executions as µhb graphs

• Nodes: Microarchitectural events or pipeline stages

• Edges: Happens-before relationships between nodes

▪Automatic exhaustive enumeration of all possible litmus test executions

• Cyclic Graph → Unobservable execution

• Acyclic Graph → Observable execution

≥1 acyclic
(Observable)

0 acyclic
(Unobservable)

Permitted OK OK (Stricter than necessary)

Forbidden BUG OK
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Litmus test-based verification

▪ Litmus tests: small parallel programs (4-8 instrs)

• Used to highlight memory model differences/features

• Typically there is one non-SC outcome of interest (e.g. r1 = 1, r2 = 0 for mp)

▪Different litmus tests associated with different ISA models

• ISA memory model often characterized by their Permitted and Forbidden non-SC 
litmus test outcomes

• e.g. TSO litmus test suite, Power litmus test suite, ARM litmus test suite

▪Why litmus test-based verification?

• Focus verification on the scenarios most likely to exhibit bugs, but…

• …litmus test-based verification is incomplete (i.e. won’t catch all bugs)

• PipeProof [Manerkar et al. MICRO 2018] solves this problem! (all-program verification)



Some Example Litmus Tests

Thread 0 Thread 1

i1: Store [x]  1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

co-mp (mp with one addr)

Thread 0 Thread 1

i1: Store [x]  1
i2: Store [y]  1

i3: r1 = Load [y]
i4: r2 = Load [x]

SC Forbids: r1=1, r2=0

mp (Message Passing)

Thread 0 Thread 1

i1: Store [x]  1
i2: r1 = Load [y]

i3: Store [y]  1
i4: r2 = Load [x]

SC Forbids: r1=0, r2=0

sb (Store Buffering)

Thread 0 Thread 1 Thread 2 Thread 3

i1: Store [x]  1 i2: Store [y]  1 i3: r1 = Load [x]
i4: r2 = Load [y]

i5: r1 = Load [y]
i6: r2 = Load [x]

SC Forbids: r1=1, r2=0, r3=1, r4=0

iriw (Independent Reads, Independent Writes)



Other things to note

▪Check can handle heterogeneous parallelism (not covered today)

▪Check can handle microarch. optimizations like speculative execution

▪Different flows into and out of tools over the years

• Originally: uspec DSL => custom solver (written in Gallina)

− runtimes of seconds/minutes for a single test

• More recently:

− input specifications in Alloy (for CheckMate tool)

− µspec compiled into Z3 formula (in progress)

▪ Solver’s search for a satisfying assignment == search for acyclic graph


