Background: Basics of our Approach

" Microarch. enforces ISA-level MCM through many small orderings

* |n-order fetch/commit

~ Fetch | Fetch
* FIFO store buffers e e e
- Dec. Lds. ~ Dec.
e Coherence protocol —+t || sB SB ||—+—
. Exec. | .~ Exec. |
Y (! N\ (' N
“Mem. FIH L1] [1 RY Mem.
(¢ N\ ('
= Difficult to ensure that these _WB]| (T) (| e
orderings always enforce the el TS~
requ ire d 0O I’d erin gs Coherence Protocol (SWMR, DVI, etc.)

" Designs may also be complicated by optimizations (speculative load
reordering, early fence retirement, OoO execution), or novel organization
(heterogeneity)

Microarchitecture

Fetch Fe}ch
I \)
Dec. | Lds. Dec.
! |l SB SB ||, !
Exec. | - Exec. |
—— —— —
Mem. :_r'[L1) [L }'l-: Mem. _ SC/TSO/RISC-V MCM?
we | T R
— |
Coherence Protocol (SWMR, DVI, etc.)

Does hardware correctly implement ISA MCM?

Microarchitecture

. Fetch | Fetch |
s { 3 s ¢ 2
~ Dec. | Lds. ~ Dec. |
) ! |l SB SB ||, ! .
~ Exec. | ~ Exec. |
s { 3 s ' 2
- Mem. ;_r'[L1] [L1]"l.:\ Mem. |
s ‘ 3 s ‘
WB WB
) | [L2]) |
Coherence Protocol (SWMR, DVI, etc.)
Litmus Test
Core O Core 1

(1) St [x] < 1
(i2) St [y] « 1

(13) Ld rl1 « |y|
(i4) Ld r2 + [x]

Under TSO: Forbid r1=1, r2=0

?

SC/TSO/RISC-V MCM?
(for the litmus test)

Does hardware correctly implement ISA MCM?

Microarchitecture

_Fetch Fetch _
Dec. | Lds. Dec.
— 1 || sB SB |[— v — p
| Ex?c.) | Exsc.) ‘
(Mem. St L1 J L L1 = Mem. SC/TSO/RISC-V MCM?
WB| | L2] W8 (for the litmus test)
Coherence Protocol (SWMR, DVI, etc.)
+ Instruction | |
| level analysis of Microarch. analysis
Litmus Test :
Core O Core 1 litmus test Observable | Unobservable
() St X <=1 B3 Ldrl] | [Permitted | oK oK
(i2) St [y] <= 1 | (i4) Ld 12 < [x] 1 Forbidden | BUG OK
Under TSO: Forbid r1=1, r2=0

Microarchitecture Specification in uSpec DSL
Axiom "PO_Fetch":
forall microops "il",
forall microops "i2",
SameCore il i2 /\ ProgramOrder il i2 =>
AddEdge ((il, Fetch), (i2, Fetch), "PO").

Axiom "Execute_stage_is_in_order": — SC/TSO/RlSC-V MCM?
Forall microops "il", (for the litmus test)

forall microops "i2",
SameCore 11 i2 /\
EdgeExists ((il, Fetch), (i2, Fetch)) =>
AddEdge ((il, Execute), (i2, Execute), "").

Instruction
+ level analysis of Microarch. analysis
Litmus Test .
Core O Core 1 litmus test Observable | Unobservable
(1) St [< 1 | (13) Ld rl < [y] | [Permitted | oK oK
(12) St [y] <~ 1] (i4) Ld 12 < [x] l Forbidden | BUG OK
Under TSO: Forbid r1=1, r2=0

Microarchitecture Specification in uSpec DSL

Axiom "PO_Fetch":

forall microops "il",

forall microops "i2",

SameCore il i2 /\ ProgramOrder il i2 =>
AddEdge ((il, Fetch), (i2, Fetch), "PO").

Axiom "Execute stage is in order":
forall microops "il",
forall microops "i2",
SameCore il i2 /\
EdgeExists ((il, Fetch), (i2, Fetch)) =>

AddEdge ((il, Execute), (i2, Execute), "").

+

Litmus Test

Core 0 Core 1
(i1) St [x] « 1 | (i3) Ld r1 « [y]
(i2) St [y] « 1 | (i4) Ld r2 + [x]
Under TSO: Forbid r1=1, r2=0

CReRiNe
P
e
g\’b\\ Q e
N F
<§9~c§so 8
SIS
IS
% Q/er
*\S\rb QOC) Q_ﬂ_?_’_‘_’..,@....fﬁ.,@ Q""?'?'
“ |
> QR 9 =
@ fO>O Q-
: :
Q
@)
\
\
\

Microarchitectural happens-before (pnhb) graphs

= Early stage, design-time verification

= Key Idea: Model executions as phb graphs
* Nodes: Microarchitectural events or pipeline stages

* Edges: Happens-before relationships between nodes

= Automatic exhaustive enumeration of all possible litmus test executions

- . @ ®) @
* Cyclic Graph - Unobservable execution po po

FetchStage »Q Q >Q
D 4

¥
¥
Y,

<O

* Acyclic Graph — Observable execution Decodes
€codace tage

ExecuteStage

Y

>1 acyclic 0 acyclic

Q_

Q_

(Observable) (Unobservable) MemoryStage Q
Q_

O

Y

Y

Permitted | OK OK (Stricter than necessary) WritebackStage

Store Buffer

Forbidden |BUG OK

Mem. Hierarchy

= Early stage, design-time verification

= Key Idea: Model executions as phb graphs
* Nodes: Microarchitectural events or pipeline stages

* Edges: Happens-before relationships between nodes

= Automatic exhaustive enumeration of all possible litmus test executions

: . @ ® @ (@
* Cyclic Graph - Unobservable execution po po
FetchStage > >
* Acyclic Graph — Observable execution I Q Q Q Q
€codace tage
>1 acyclic 0 acyclic Freauestage
(Observable) (Unobservable) MemoryStage
Permitted | OK OK (Stricter than necessary) WritebackStage
Store Buffer
Forbidden | BUG OK t
Mem. Hierarchy

= Early stage, design-time verification

= Key Idea: Model executions as phb graphs
* Nodes: Microarchitectural events or pipeline stages

* Edges: Happens-before relationships between nodes

= Automatic exhaustive enumeration of all possible litmus test executions
(a) (b) () (d)

* Cyclic Graph - Unobservable execution po po
FetchStage 5 >
* Acyclic Graph — Observable execution I Q Q Q Q
€codace tage ‘ (
>1 acyclic 0 acyclic Freauestage
(Observable) (Unobservable) MemoryStage
Permitted | OK OK (Stricter than necessary) WritebackStage
Store Buffer
Forbidden | BUG OK
Mem. Hierarchy

" | itmus tests: small parallel programs (4-8 instrs)
* Used to highlight memory model differences/features

* Typically there is one non-SC outcome of interest (e.g. r1 =1, r2 =0 for mp)

® Different litmus tests associated with different ISA models

* |[SA memory model often characterized by their Permitted and Forbidden non-SC
litmus test outcomes

e e.g. TSO litmus test suite, Power litmus test suite, ARM litmus test suite

=" Why litmus test-based verification?
* Focus verification on the scenarios most likely to exhibit bugs, but...
e ..litmus test-based verification is incomplete (i.e. won’t catch all bugs)

e PipeProof [Manerkar et al. MICRO 2018] solves this problem! (all-program verification)

Some Example Litmus Tests

mp (Message Passing) co-mp (mp with one addr) sb (Store Buffering)

Thread 0 Thread 1 Thread O Thread 1

Thread O Thread 1

il:Store [x] € 1| i3:rl=Load[y] ||il:Store[x] € 1| i3:rl=Load[x] ||il:Store[x] € 1 |i3:Store[y] € 1
i2: Store [y] € 1| i4:r2=Load [x] ||i2:Store[x] € 2| i4:r2=Load [x] || i2:rl=Lload[y] | i4:r2 = Load [X]

SC Forbids: r1=1, r2=0 SC Forbids: r1=2, r2=1, Mem|[x] = 2 SC Forbids: r1=0, r2=0

iriw (Independent Reads, Independent Writes)
Thread O Thread 1 Thread 2 Thread 3

il: Store [x] € 1|i2:Store[y] € 1| i3:rl=Load [x] | i5:rl = Load [y]
i4:r2 =Load [y] | i6:r2 = Load [X]

SC Forbids: r1=1, r2=0, r3=1, r4=0

" Check can handle heterogeneous parallelism (not covered today)
" Check can handle microarch. optimizations like speculative execution

» Different flows into and out of tools over the years
 Originally: uspec DSL => custom solver (written in Gallina)
— runtimes of seconds/minutes for a single test

* More recently:
— input specifications in Alloy (for CheckMate tool)

— uspec compiled into Z3 formula (in progress)

" Solver’s search for a satisfying assignment == search for acyclic graph

