PipeCheck Hands-On

= Will take you through modelling simple uarches in uSpec

= simpleSC: An SC microarchitecture

* Partially completed uarch specification in VM, you will fill in remainder
= |nitially, will look at verifying individual litmus test programs

= | ater, will look at verifying across all programs (an infinite spacel!)

Core O Core l

[Fetch] [Fetch]
| |

[Execute EXxecute]
| |

[Writeback] [Writeback]

Memory Hierarchy

Core O 3-stage Core l

[Fetch] in-order [Fetch]
l pipelines l

[Execute EXxecute]
| |

[Writeback] [Writeback]

Memory Hierarchy

Core O Core l

[Fetch] [Fetch]
| |

[Execute EXxecute]
| |

[Writeback] [Writeback]

Memory Hierarchy

C[oreO Core l
Fetch] [Fetch]
| |
[Execute EXxecute]
| |
[Writeback] [Writeback]

v., Stores sent
.. to Memory
during
Writeback

Stores sent R
to Memory [

Writeback

during
Memory Hierarchy

1. Start VirtualBox VM
2. Open a Terminal

3. Partially completed SC uarch in
/home/check/pipecheck tutorial/uarches/SC fillable.uarch

" | anguage has capabilities similar to first-order logic (FOL)
e forall, exists, AND (/\), OR (\/), NOT (~), implication (=>)

* Has a number of built-in predicates which take memory operations as input
—e.g. ProgramOrder i j where 1 and j are loads/stores

— Other predicates include SamePhysicalAddress, SameData, IsAnyRead, ..
* See “Check Quick Start” handout for a more extensive list

* Predicates can also reference nodes and edges
— e.g. EdgeExists ((il, Fetch), (i2, Fetch))

— This predicate is true iff an edge exists between 11 and 12’s Fetch stages

e All uhb edges are transitive (so uSpec is not a subset of FOL)

" Microarchitecture spec has three components:
 Stage identifier definitions
* Macro definitions (optional)

e Axiom definitions

" Macros allow:
e decomposition of axioms into smaller parts

* reuse of uspec fragments
" Axioms are each a partial ordering on the events in an execution

" Job of PipeCheck is to ensure that these axioms correctly work
together to uphold ISA-level MCM requirements for a litmus test

Core O

[Fetch]
|
[Execute

!

[Writeback]

Memory Hierarchy

Core O
[Fetch]
|
[Execute Stores and loads go through
1 the pipeline stages in order
[Writeback]

Memory Hierarchy

“Instr Path":
Ilill’
[((i, Fetch), (i, Execute), "path");

((i, Execute), (i, Writeback), "path")].

AXiom
_hame

Axiom “Instr_Path":

forall microops "1",
AddEdges [((i, Fetch), (i, Execute), "path");
((i, Execute), (i, Writeback), "path")].

Microop: A single load/store op.
May correspond to an ISA instr,
or part of an ISA Instr.

g

Axiom “Instr_Path":

forall e

AddEdges [((i, Fetch), (i, Execute), "path");
((i, Execute), (i, Writeback), "path")].

For all load/store ops...

Axiom “Instr E

forall microops "1i",

AddEdges [((i, Fetch), (i, Execute), "path");
((i, Execute), (i, Writeback), "path")].

Axiom “Instr_Path":
forall microops "1",
AddEdges [((i, Fetch), (i, Execute), "path");

((i, Execute), (i, Writeback), "path")].

Add edges from Fetch to Execute, and
Execute to Writeback

" A node represents a particular event in a particular instruction’s
execution

" Format for nodes is: (instr, stage/event name)

*Thus, (1, Fetch) represents the fetch stage of instruction 1i...

Each column represents an instruction flowing
through the pipeline

PN
4 N
(i1) (i2) (i3) (i4)
Fetch
Edges added
Execute according to
Instr_Path
axiom
Writeback

Initially, Mem([x] =0

il: Store [x] € 1 i3:rl = Load [X]
i2: Store [x] € 2 i4: r2 = Load [X]

SC Forbids: r1=2, r2=1, Mem|[x] = 2

All Instructions on the
| Fetfﬂil_] same core go through

e, Fetch in program
[Fetchy,] order

The PO Fetch Axiom

Axiom "PO_Fetch":

forall microops "11",

forall microops "12",

SameCore 11 12 /\ ProgramOrder 11 12 =>

AddEdge ((il1, Fetch), (i2, Fetch), "PO", "blue").

The PO Fetch Axiom

Axiom "PO_Fetch":

forall microops "11",
forall microops "12",
SameCore 11 12 /\ ProgramOrder 11 12 =>

AddEdge ((il, FetcgM), (i2, Fetch), "PO", "blue").

Use of predicates to check that instrs are
on the same core and in program order

The PO Fetch Axiom

Axiom "PO_Fetch":

forall microops "11",

forall microops "12",

SameCore 11 12 /\ ProgramOrder 11 12 =>

AddEdge ((il1, Fetch), (i2, Fetch), "PO", "blue").

Add edge from Fetch stage of earlier
Instruction to Fetch stage of later instruction

uhb Graphs for co-mp Using Axioms

Each column represents an instruction flowing

through the pipeline

N
4 h

(i1) (i2) (i3) (i4)

Fetch

Execute

Writeback

Initially, Mem([x] =0

Thread O Thread 1

il: Store [x] € 1 i3:rl = Load [X]
i2: Store [x] € 2 i4: r2 = Load [X]

SC Forbids: r1=2, r2=1, Mem([x] = 2

uhb Graphs for co-mp Using Axioms

Each column represents an instruction flowing

through the pipeline
g App

4 R
(i1) (i2) (i3) (i4)
Fetch
Edges Added Using
PO_Fetch axiom
Execute
Writeback

Initially, Mem([x] =0

Thread O Thread 1

il: Store [x] € 1 i3:rl = Load [X]
i2: Store [x] € 2 i4: r2 = Load [X]

SC Forbids: r1=2, r2=1, Mem([x] = 2

[Fetch,]

!

[Execute,;]

[Fetch;,]

!

[Execute;;][Fetch,,]

!

[Execute,,]

[Fetch,] If two _instructions on

l the same core go
[Execute;,][Fetch,,] through_Fetch In_order,
| they will go through

Execute In the same
order

[Execute,,]

The Execute Stage Is In order Axiom

Axiom "Execute stage is in_order":

forall microops "11",

forall microops "12",

SameCore 11 12 /\

EdgeExists ((il, Fetch), (i2, Fetch), "") =>
AddEdge ((il, Execute), (i2, Execute), "PPO").

The Execute Stage Is In order Axiom

Axiom "Execute stage is in_order":
forall microops "11",
forall microops "12",
SameCore 11 12 /\
EdgeExists ((il, Fetch), (i2, Fetch), "")]=>
AddEdge ((il, Exeedute), (i2, Execute), "PPO").

If Instructions on same core
go through Fetch in order...

The Execute Stage Is In order Axiom

Axiom "Execute stage is in_order":

forall microops "11",

forall microops "12",

SameCore 11 12 /\

EdgeExists ((il, Fetch), (i2, Fetch), "") =>
AddEdge ((il, Execute), (i2, Execute), "PPO").

...then they go through
Execute in the same order.

[Fetch,]

[Writeback,]

[Fetch,]

!

[Fetch,,]

!

[Writeback,]

[Writeback;,]

[Fetch,;]

!

[Fetch,,] If two instructions on
l the same core go
through Fetch in order,
they will go through
Writeback in the same
order

[Writeback,]

[Writeback:,]

If two Instructions on the same core go through Fetch In
order, they will go through Writeback in the same order

Axiom "Writeback stage is in order":

forall microops "il",

forall microops "1i2",

i1 12 /\

EdgeExists ((il,), (12,), "") =>
AddEdge ((i1l,), (12,), "PPO").

If two Instructions on the same core go through Fetch In
order, they will go through Writeback in the same order

Axiom "Writeback stage is in order":

forall microops "il",

forall microops "i2",

SameCore 11 12 /\

EdgeExists ((il, Fetch), (i2, Fetch), "") =>
AddEdge ((il1, Writeback), (i2, Writeback), "PPO").

uhb Graphs for co-mp Using Axioms

Each column represents an instruction flowing

through the pipeline

N
4 h

(i1) (i2) (i3) (i4)

Fetch

Execute

Writeback

Initially, Mem([x] =0

Thread O Thread 1

il: Store [x] € 1 i3:rl = Load [X]
i2: Store [x] € 2 i4: r2 = Load [X]

SC Forbids: r1=2, r2=1, Mem([x] = 2

uhb Graphs for co-mp Using Axioms

Each column represents an instruction flowing

through the pipeline

N
4 h

(i1) (i2) (i3) (i4)

Fetch

Execute

Writeback

Initially, Mem([x] =0

Thread O Thread 1

il: Store [x] € 1 i3:rl = Load [X]
i2: Store [x] € 2 i4: r2 = Load [X]

SC Forbids: r1=2, r2=1, Mem([x] = 2

uhb Graphs for co-mp Using Axioms

Each column represents an instruction flowing

through the pipeline

N
4 h

(i1) (i2) (i3) (i4)

Fetch

Edges from
Execute_stage_is
_in_order &
Writeback_stage
_is_in_order
axioms

Execute

Writeback

Initially, Mem([x] =0

Thread 0

il: Store [x] € 1
i2: Store [x] € 2

Thread 1

i3:rl = Load [X]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem([x] = 2

[Writeback;,] [Writeback;,]

Memory Hierarchy

All writes to the same address must be
totally ordered at memory.
(coherence order)

[Writeback;,] [Writeback;,]

Memory Hierarchy

All writes to the same address must be
totally ordered at memory.
(coherence order)

[Writeback;,] [Writeback;,]

11: Store y=1 12: Store y=2

Memory Hierarchy

All writes to the same address must be
totally ordered at memory.
(coherence order)

Coherence order:

[Writeback,] OR [Writeback;,]

11: Store y=1 12: Store y=2

The WriteSerialization Axiom

Axiom "WriteSerialization":
forall microops "il",
forall microops "i2",
(~(SameMicroop i1 i2) /\ IsAnyWrite il
/\ IsAnyWrite i2 /\ SamePhysicalAddress il i2) =>
(EdgeExists ((i1, Writeback), (i2, Writeback)) \/
EdgeExists ((i2, Writeback), (il, Writeback))).

The WriteSerialization Axiom

Axiom "WriteSerialization":
forall microops "il",
forall microops "i2"

/\ IsAnyWrite 12 /\ SamePhysicalAddress 11 12))=
(EdgeExists ((il, Writeback), (i2, Writeback)) \/
EdgeExists , Writeback), (i1, Writeback))).

Two different writes to the
same address

The WriteSerialization Axiom

Axiom "WriteSerialization":
forall microops "il",
forall microops "i2",
(~(SameMicroop i1 i2) /\ IsAnyWrite il
/\ IsAnyWrite 12 /\ SamePhysicalAddress 11 12) =

(EdgeExists ((il, Writeback), (i2, Writeback)) \/
EdgeExists ((i2, Writeback), (il, Writeback))).

Either 11 i1s before 12 In
coherence order, OR vice-versa.

uhb Graphs for co-mp Using Axioms

WriteSerialization axiom

Thread O Thread 1

il: Store [x] € 1 i3:rl = Load [X]
i2: Store [x] € 2 i4: r2 = Load [X]

SC Forbids: r1=2, r2=1, Mem([x] = 2

uhb Graphs for co-mp Using Axioms

WriteSerialization axiom

““Two solutions; "**..,
A ‘Each enumerated separatelv A

(i1) (i2) (i3) (i4) (i1) (i2) (i3) (i4)
Fetch Fetch
Execute Execute
Writeback Writeback

Thread O Thread 1

il: Store [x] € 1 i3:rl = Load [X]
i2: Store [x] € 2 i4: r2 = Load [X]

SC Forbids: r1=2, r2=1, Mem([x] =

uhb Graphs for co-mp Using Axioms

WriteSerialization axiom

““Two solutions; "**..,
A ‘Each enumerated separatelv A

(i1) (i2) (i3) (i4) (i1) (i2) (i3) (i4)
Fetch Fetch
Execute Execute
Writeback Writeback

Thread O Thread 1

il: Store [x] € 1 i3:rl = Load [X]
i2: Store [x] € 2 i4: r2 = Load [X]

SC Forbids: r1=2, r2=1, Mem([x] =

uhb Graphs for co-mp Using Axioms

WriteSerialization axiom

" Two solutions; ...
& ‘Each enumerated separatelv A

(i1) (i2) (i3) (i4) (i1) (i2) (i3) (i4)
Fetch Fetch
Execute Execute
Writeback Writeback

: Thread O Thread 1
We will focus on left i1:Store [x] €1 | i3:r1=Load [x]

graph going forward i2: Store [x] €2 | i4:r2 = Load [x]
SC Forbids: r1=2, r2=1, Mem[x] =

[Writeback;,] [Writeback;,]

Coherence order:
11: Store y=1 | === - - 12: Store y=2

Test requires
[Writebackil] y final =2 [Writebacki2]

Coherence order:

If alitmus test requires that an address has the value
of a certain write at the end of the test, that write must
be the last to reach memory.

Test requires
[Writebacki1] y final =2 [Writebacki2]

Coherence order:
11: Store y=1 | === - - 12: Store y=2

If alitmus test requires that an address has the value
of a certain write at the end of the test, that write must
be the last to reach memory.

EnforceFinalWrite axiom in the uSpec

Test requires
[Writeba(:kil] y final =2 [Writebacki2]

Coherence order:

11: Store y=1 | === == === - - 12: Store y=2
y Enforced by test Y

Memory Hierarchy

[Execute;,]

!

[Writebacki1][Execute;,]

Memory Hierarchy

A write must complete
Its writeback before
loads/stores on the
same core that are

fetched after the write.

[Execute,;]

!

[WfitEbaCku][Execute;,] (otherwise the write could
be reordered with later
writes or later reads)

Memory Hierarchy

A write must complete
Its writeback before
loads/stores on the
same core that are

fetched after the write.

[Execute;;]
!
J

[Writeback;,

(otherwise the write could
be reordered with later
writes or later reads)

A write must complete
Its writeback before
loads/stores on the
same core that are

fetched after the write.

[Execute;;]

‘|’ Execute;,] (otherwise the write could
be reordered with later

writes or later reads)

Memory Hierarchy

A write must complete its writeback before execution of
loads/stores on the same core that are fetched after the
write.

Axiom "EnforcelWritePPQO":

forall microop "w",

forall microop "1i",
(w /\ w i
/\ EdgeExists((w, Fetch), (i, Fetch), "")) =>
AddEdge ((w,), (1,)) -

A write must complete its writeback before execution of
loads/stores on the same core that are fetched after the
write.

Axiom "EnforcelWritePPO":

forall microop "w",
forall microop "1",
(IsAnyWrite w /\ SameCore w i
/\ EdgeExists((w, Fetch), (i, Fetch), "")) =>

AddEdge ((w, Writeback), (i, Execute)).

uhb Graphs for co-mp Using Axioms

Each column represents an instruction flowing

through the pipeline

N
4 h

(i1) (i2) (i3) (i4)

Fetch

Execute

Writeback

Initially, Mem([x] =0

Thread O Thread 1

il: Store [x] € 1 i3:rl = Load [X]
i2: Store [x] € 2 i4: r2 = Load [X]

SC Forbids: r1=2, r2=1, Mem([x] = 2

uhb Graphs for co-mp Using Axioms

Each column represents an instruction flowing

through the pipeline
g App

: A
Fetch
Edge added by
Execute EnforceWrite
PPO axiom
Writeback

Initially, Mem([x] =0

Thread O Thread 1

il: Store [x] € 1 i3:rl = Load [X]
i2: Store [x] € 2 i4: r2 = Load [X]

SC Forbids: r1=2, r2=1, Mem([x] = 2

[EXxecute]

[Writeback,]

If aload reads the initial value

of a memory location, it must
execute before any write to
that location reaches Mem.

[Writeback,]

[Execute]

If aload reads the initial value

of a memory location, it must
execute before any write to
that location reaches Mem.

[Writeback,]

EXxecute]

If aload reads the initial value

of a memory location, it must
execute before any write to
that location reaches Mem.

[Writeback,]

w: Store y=1

EXxecute]

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA 1 /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((1,), (W,))).

DefineMacro "BeforeAllWrites":

~
|

DataFromInitijalStateAtPA 1 /\
forall microgp "w", (
(IsAnyWrite W /\ SamePhysicalAddress w 1

/\ ~SameMidqroop i w) =>
AddEdge ((1,), (w, 1)) .

Macro: This Is a uSpec fragment
that can be instantiated as part
of a larger axiom

DefineMacro "BeforeAllWrites"

forall microop ™., (

(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w)
AddEdge ((1i,

Check that the load reads
the data from the initial
state of the litmus test

DefineMacro "BeforeAllWrites™:
DataFromInitialStateAtPA 1 /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((1,) (w,))).

If a load reads the initial value of a memory location, it
must execute before any write to that addr completes its
writeback.

DefineMacro "BeforeAllWrites™:
DataFromInitialStateAtPA 1 /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>

AddEdge ((i, Execute), (w, Writeback))).

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA 1 /\
forall microop
(IsAnyWrite w /\ SamePhysicalAddress w i

/\ ~SameMicroop i w) =>
AddEdge ((i, Execute), (w, Writeback))).

Enforce that the load
executes before all writes
to Its address in the test

[EXxecute]

[Writeback,]

Memory Hierarchy

A load must execute either
before or after any write to its
address completes writeback.

[EXxecute]

[Writeback,]

Memory Hierarchy

A load must execute either
before or after any write to its
address completes writeback.

EXxecute]

[Writeback,]

w: Store y=vall

Memory Hierarchy

A load must execute either
before or after any write to its
address completes writeback.

> 4 EXxecute]

The Before Or After Every SameAddrWrite Macro

DefineMacro "Before Or After Every SameAddrWrite":
forall microop "w", (

(IsAnyWrite w /\ SamePhysicalAddress w i) =>
(AddEdge ((w, Writeback)), (i, Execute)) \/
AddEdge ((i, Execute), (w, Writeback)))).

The Before Or After Every SameAddrWrite Macro

DefineMacro "Before Or After Every SameAddrWrite":
forall microop "w", (

IsAnyWrite w /\ SamePhysicalAddress w 1
(AddEdge ((w, Writeback)), (i, Execute)) \/
AddEdge ((i, Execute), (w, Writeback)))).

Either w completes writeback
before | executes, or vice-versa.

[EXxecute]

[Writeback,,]

A load must read from the latest write to that address to reach
memory.

[Execute]

[Writeback,,]

Alternatively:
1) The load must execute after the write it reads from
2) No writes to that address between the source write and the read

[Execute]

[Writeback,,]

<
[
o

Alternatively:

1) The load must execute after the write it reads from
2) No writes to that address between the source write and the read

[Execute]

[Writeback,,]

w: Sty=1

Alternatively:

1) The load must execute after the write it reads from
2) No writes to that address between the source write and the read

EXxecute]

[Writeback,,]

w: Sty=1

Alternatively:

1) The load must execute after the write it reads from
2) No writes to that address between the source write and the read

EXxecute]

[Writeback,,]

[Writeback,,]
w: Sty=1

O

DefineMacro "No SameAddrWrites Btwn Src And Read":
exists microop "w", (
IsAnyWrite w /\ w i /\ w 1

/\ AddeEdge ((w, Writeback), (i, Execute)) /\

~(exists microop "w'",
IsAnyWrite w' /\ 1w’ /\
~SameMicroop w w’
/\ EdgesExist [((w, Writeback), (w’, Writeback));

((w’, Writeback), (i, Execute))])).

1) The load must execute after the write it reads from
2) No writes to that address between the source write and the read

DefineMacro "No SameAddrWrites Btwn Src And Read":
exists microop "w", (
IsAnyWrite w /\ SamePhysicalAddress w i /\ SameData w 1i

/\ AddEdge ((w, Writeback), (i, Execute)) /\

~(exists microop "w'",
IsAnyWrite w' /\ SamePhysicalAddress 1 w’ /\
~SameMicroop w w’
/\ EdgesExist [((w, Writeback), (w’, Writeback));

((w’, Writeback), (i, Execute))])).

DefineMacro "No SameAddrWrites Btwn Src And Read":
exists microop
IsAnyWrite w /\ SamePhysicalAddress w i /\ SameData w 1i
/\ AddEdge ((w, Writeback), (i, Execute)) /\

~(exists microop "w'",
IsAnyWrite w' /\ SamepfiysicalAddress 1 w’ /\

~SameMicroop w w’

/\ EdgesExist [(fw, Writeback), (w’, Writeback));

(w’, Writeback), (i, Execute))])).

Read | executes after its source
write w reaches memory...

DefineMacro "No SameAddrWrites Btwn Src And Read":

exists microop "w", (

IsAnyWrite w /\ SamePhysicalAddress w i /\ SameData w 1i
/\ AddEdge ((w, Writeback), (i, Execute)) /\
~(exists microop "w'",
IsAnyWrite w' /\ SamePhysicalAddress 1 w’ /\
~SameMicroop w w’

/\ EdgesExist [((w, Writeback), (w’, Writeback));

((w’, Writeback), (i, Execute))])).

...and there are no writes w’ to
that addr between the source
write w and the read 1.

Axiom "Read Values":
forall microops "1i"
IsAnyRead i =>

(ExpandMacro BeforeAllWrites \/

(
ExpandMacro No_SameAddrWrites Btwn Src And Read
/\

ExpandMacro Before Or_ After Every SameAddrWrite
).

J)

Axiom "Read Values":
forall microops "i",

IsAnyRead i =>

Expand
/\

)) -

(ExpandMacfo BeforeAllWrites \/

bcro No_SameAddrWrites Btwn Src And Read

ExpandMakro Before Or_ After Every SameAddrWrite

For all reads | (same identifier
used in the macros)...

Axiom "Read _Values": ...either the read executes

forall microops "1, before all writes (expand
IsAnyRead 1 => macro defined earlier)...
(ExpandMacro BeforeAllWrites|\/

(

ExpandMacro No_SameAddrWrites Btwn Src And Read

/\
ExpandMacro Before Or_ After Every SameAddrWrite

)) -

Axiom "Read Values":
forall microops "1i"
IsAnyRead i =>

(ExpandMacro BeforeAllWrites \/
(

J)

ExpandMacro No_SameAddrWrites Btwn Src And Read
/\

ExpandMacro Before Or_ After Every SameAddrWrite
).

...or the read reads from
the latest write to that
address

uhb Graphs for co-mp Using Axioms

Each column represents an instruction flowing

through the pipeline

N
4 h

(i1) (i2) (i3) (i4)

Fetch

Execute

Writeback

Initially, Mem([x] =0

Thread O Thread 1

il: Store [x] € 1 i3:rl = Load [X]
i2: Store [x] € 2 i4: r2 = Load [X]

SC Forbids: r1=2, r2=1, Mem([x] = 2

uhb Graphs for co-mp Using Axioms

Each column represents an instruction flowing
through the pipeline

A
! N
(i1) (i2) (i3) (i4)
Fetch
* i3 must be sourced
from the write i2
Execute * Nointervening
writes; constraint
satisfied
Writeback

Initially, Mem([x] =0

Thread O Thread 1

il: Store [x] € 1 i3:rl = Load [X]
i2: Store [x] € 2 i4: r2 = Load [X]

SC Forbids: r1=2, r2=1, Mem([x] = 2

uhb Graphs for co-mp Using Axioms

Each column represents an instruction flowing
through the pipeline

A
g)
(i1) (i2) (i3) (i4)
Fetch
* i4 must be sourced
from il
Execute * Buti2 intervenes!
=> Constraint
unsatisfiable
Writeback

Initially, Mem([x] =0

Thread O Thread 1

il: Store [x] € 1 i3:rl = Load [X]
i2: Store [x] € 2 i4: r2 = Load [X]

SC Forbids: r1=2, r2=1, Mem([x] = 2

Cannot find an acyclic graph that satisfies all
constraints =>
Forbidden Execution of co-mp is NOT
observable on parch!

A =~

B R R R R

H H HH

#
$

Assuming you are in ~/pipechecR_tutorial/uarches/
check -1 ../tests/SC tests/co-mp.test -m SC fillable.uarch

If your uarch 1is valid, the above will create co-mp.pdf in your
current directory (open pdfs from command Line with evince)

To run the solution version of the SC uarch on this test:

(Note: this will overwrite the co-mp.pdf in your current folder)
check -i ../tests/SC _tests/co-mp.test -m SC.uarch -d solutions/

If you get an error (cannot parse uarch, ps2pdf crashes, etc),
examine your syntax or askR for help.

If the outcome is observable (“BUG”), compare the graphs
generated by the solution uarch to those of your uarch.

To compare the uarches themselves:
diff SC_fillable.uarch solutions/SC.uarch

Assuming you are in ~/pipecheck_tutorial/uarches/
$ run_tests -v 2 -t ../tests/SC tests/ -m SC fillable.uarch

The above will generate *.gv files in ~/pipecheck_tutorial/out/
for all SC tests, and output overall statistics at the end. If

the count for “Buggy” 1s non-zero, your uarch 1is faulty. LooR for
the tests that output “BUG” to find out which tests fail.

You can use gen _graph to convert gv files into PDFs:
$ gen _graph -i <test gv file>

Compare your uarch with the solution SC uarch using diff to find
discrepancies:
$ diff SC_fillable.uarch solutions/SC.uarch

cu
/zdmi
cu
oTOI
60014
61094es
€z0d4es
Gg0ajes
€001
vc094es
MLII-0D
Tu
9004
Jav

cpwe
LE03JES
GEQ3Jes
TO0IMmpod
STOH
8C024Es
oTpwe
SO0
TTOH
8TOIH
€T034€s
mwoﬂmm

14
9T0>Jes
Y10
TcQO34es
y¢dml
MU
LTOJ
paoUD-IMJ
£C03JES
€TOIH
7€034ES
800°4€s
gu
0003Jes
9¢03Jes
TO034es
egzdmi
TT0=jes
P32U3UN-OMJ
CE034es
CTOH
9T0!H
CT0O34es
7T024Es
qu
€0034es
£195pue1sal
£003Jes
000!
p|a|eis+dw
0c0=4es
S90Udj+dw
S0034es
60034es
TE034es
009jes
Ww-02
UM
8T03Jes

—4-gem5 03 =#=0OpenSPARC T2

-m-FiveStage (w/ SB)

lospuelsal
ggzdmi
zc0a4es
0£03jes
0T03jes
0014
moo_t

w

TOOH
Iss

6C094es

!
o

0.01

PipeCheck Verification Time
—+—FiveStage (No SB)

(s) swnuny

=" But there’s more!

" PipeCheck can handle heterogeneous pipelines:

(@) (b) (0 (d)

po po
FetchStage Q)Q Q)Q FetchStage
DecodeStage Q— >Q Q— > DecodeStage
RenameStage Q— >Q Q— >Q ExecuteStage
IssueStage Q Q MemoryStage
ExecuteStage Q Q WritebackStage
WritebackStage Q Q StoreBuffer
CommitStage Q— O
StoreBuffer Q
Mem. Hierarc hy Mem. Hierarc hy

" ..and microarchitectural optimizations...

Store Buffer

Mem. Hierarc

=
=

Cache Line Cache Line Cache Line
(il) (2) for (i3) (i3) for (i4) (i4) (il) (i2) for (i3) (i3)
FetchStage O>Q QPE.QPO,.Q
DecodeStage Q Left: Speculative Q*Q**Q
RenameStage > Load Reordering QrQ >0
IssueStage

ExccuteStage ,lQ ¥ S Y

) '}f Right: Speculative Cfpp Cf:q
WritebackStage Q Fence Retirement O L O
CommitStage > Q_ -+

o

Completed

= ..and the methodology is extensible to other ordering types, including...

CCICheck: Coherence orderings that COATCheck: Addr Translation/Virtual
Memory orderings that affect consistency

affect consistency (with ViCL abstraction)
@ @ @

FetchStage Fetch
Dispatch
DecodeStage Issue
AGU
ExecuteStage AccessTLB
TLBEntryCreate
MemoryStage TLBEntryInvalidate
. SB-VTag/Index/Data
WritebackStage LB-Index
LB-SB-IndexCompare
StoreBuffer P
LB-SB-VTagCompare
Completed SB-PTag
LB-PTag

LB-SB-PTagCompare
SB-LB-DataForward

L1 ViCL Create

L1 ViCL Downgrade AccessCache
CacheLinelnvalidated
L1 ViCL Expire WriteBack
) LBSearch
L2 ViCL Create _
Commit
InvSharers LeaveStoreBuffer

L2 ViCL Expire

MemorvHierarchy

" Fast, automated per-program verification
" Check implementation against ISA spec

" Decompose RTL verification into smaller per-axiom sub-problems

* More on that after the coffee break with RTLCheck!

" Open-Sourced:

https://github.com/daniellustig/coatcheck

Repo from this tutorial:

nttps://github.com/ymanerka/pipecheck tutorial

https://github.com/daniellustig/coatcheck
https://github.com/ymanerka/pipecheck_tutorial

