
PipeCheck Hands-On



Overview
▪Will take you through modelling simple uarches in µSpec

▪ simpleSC: An SC microarchitecture

• Partially completed uarch specification in VM, you will fill in remainder

▪ Initially, will look at verifying individual litmus test programs

▪ Later, will look at verifying across all programs (an infinite space!)
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1. Start VirtualBox VM

2. Open a Terminal

3. Partially completed SC uarch in
/home/check/pipecheck_tutorial/uarches/SC_fillable.uarch



µSpec: A DSL for Specifying Microarchitectures
▪ Language has capabilities similar to first-order logic (FOL)

• forall, exists, AND (/\), OR (\/), NOT (~), implication (=>)

• Has a number of built-in predicates which take memory operations as input

− e.g. ProgramOrder i j where i and j are loads/stores

− Other predicates include SamePhysicalAddress, SameData, IsAnyRead, …
• See “Check Quick Start” handout for a more extensive list

• Predicates can also reference nodes and edges

− e.g. EdgeExists ((i1, Fetch), (i2, Fetch))

− This predicate is true iff an edge exists between i1 and i2’s Fetch stages

• All µhb edges are transitive (so µSpec is not a subset of FOL)



µSpec: A DSL for Specifying Microarchitectures
▪Microarchitecture spec has three components:

• Stage identifier definitions

• Macro definitions (optional)

• Axiom definitions

▪Macros allow:

• decomposition of axioms into smaller parts

• reuse of uspec fragments

▪Axioms are each a partial ordering on the events in an execution

▪ Job of PipeCheck is to ensure that these axioms correctly work 
together to uphold ISA-level MCM requirements for a litmus test
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Axiom “Instr_Path":
forall microops "i",
AddEdges [((i, Fetch), (i, Execute), "path");

((i, Execute), (i, Writeback), "path")].

Microop: A single load/store op. 

May correspond to an ISA instr, 

or part of an ISA instr.
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Axiom “Instr_Path":
forall microops "i",
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For all load/store ops…
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Specifying µSpec Nodes
▪A node represents a particular event in a particular instruction’s 

execution

▪ Format for nodes is: (instr, stage/event_name)

▪Thus, (i, Fetch) represents the fetch stage of instruction i…



µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing 

through the pipeline
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Thread 0 Thread 1

i1: Store [x]  1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2
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Instr_Path
axiom

Initially, Mem[x] = 0
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The PO_Fetch Axiom
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i1: Store [x]  1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

Edges Added Using 
PO_Fetch axiom

Initially, Mem[x] = 0
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The Execute_Stage_Is_In_order Axiom
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Each column represents an instruction flowing 
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SC Forbids: r1=2, r2=1, Mem[x] = 2

Edges from
Execute_stage_is
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µhb Graphs for co-mp Using Axioms

Thread 0 Thread 1

i1: Store [x]  1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]
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w: Store y=1 i: Load y=0

Execute

Y = 1



The BeforeAllWrites Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1If a load reads the initial value

of a memory location, it must 

execute before any write to 

that location reaches Mem.

Writebacki1

w: Store y=1 i: Load y=0

Execute

Y = 0Y = 1

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((i, _______), (w, _________))).



The BeforeAllWrites Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1If a load reads the initial value

of a memory location, it must 

execute before any write to 

that location reaches Mem.

Writebacki1

w: Store y=1 i: Load y=0

Execute

Y = 0Y = 1

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((i, _______), (w, _________))).

Macro: This is a µSpec fragment 

that can be instantiated as part 

of a larger axiom



The BeforeAllWrites Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1If a load reads the initial value

of a memory location, it must 

execute before any write to 

that location reaches Mem.

Writebacki1

w: Store y=1 i: Load y=0

Execute

Y = 0Y = 1

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((i, _______), (w, _________))).

Check that the load reads 

the data from the initial 

state of the litmus test



The BeforeAllWrites Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1If a load reads the initial value

of a memory location, it must 

execute before any write to 

that location reaches Mem.

Writebacki1

w: Store y=1 i: Load y=0

Execute

Y = 0Y = 1

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((i, _______), (w, _________))).

If a load reads the initial value of a memory location, it 

must execute before any write to that addr completes its 

writeback.



The BeforeAllWrites Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1If a load reads the initial value

of a memory location, it must 

execute before any write to 

that location reaches Mem.

Writebacki1

w: Store y=1 i: Load y=0

Execute

Y = 0Y = 1

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((i, _______), (w, _________))).

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((i, Execute), (w, Writeback))).



The BeforeAllWrites Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1If a load reads the initial value

of a memory location, it must 

execute before any write to 

that location reaches Mem.

Writebacki1

w: Store y=1 i: Load y=0

Execute

Y = 0Y = 1

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((i, _______), (w, _________))).

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((i, Execute), (w, Writeback))).

Enforce that the load 

executes before all writes 

to its address in the test



Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Memory Hierarchy

Writebacki1

Execute



Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Memory Hierarchy

A load must execute either 

before or after any write to its 

address completes writeback.

Writebacki1

Execute



Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Memory Hierarchy

A load must execute either 

before or after any write to its 

address completes writeback.

Writebacki1

w: Store y=val1 i: Load y=val2

Execute



Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Memory Hierarchy

A load must execute either 

before or after any write to its 

address completes writeback.

Writebacki1

w: Store y=val1 i: Load y=val2

Execute

OR



The Before_Or_After_Every_SameAddrWrite Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Memory Hierarchy

A load must execute either 

before or after any write to its 

address reaches memory.

Writebacki1

w: Store y=val1 i: Load y=val2

Execute

OR

DefineMacro "Before_Or_After_Every_SameAddrWrite":
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i) =>
(AddEdge ((w, Writeback)), (i, Execute)) \/
AddEdge ((i, Execute), (w, Writeback)))).



The Before_Or_After_Every_SameAddrWrite Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Memory Hierarchy

A load must execute either 

before or after any write to its 

address reaches memory.

Writebacki1

w: Store y=val1 i: Load y=val2

Execute

OR

DefineMacro "Before_Or_After_Every_SameAddrWrite":
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i) =>
(AddEdge ((w, Writeback)), (i, Execute)) \/
AddEdge ((i, Execute), (w, Writeback)))).

Either w completes writeback 

before i executes, or vice-versa.



Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

Execute

Y = 0



Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

Execute

A load must read from the latest write to that address to reach 

memory.

Y = 0



Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

Execute

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0



Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1

Execute

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 1



Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 1



Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 2

Writebackw’

w’: St y=2



The No_SameAddrWrites_Btwn_Src_And_Read Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach 

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

DefineMacro "No_SameAddrWrites_Btwn_Src_And_Read":
exists microop "w", (
IsAnyWrite w /\ ___________________ w i /\ ________ w i
/\ AddEdge ((w, Writeback), (i, Execute)) /\
~(exists microop "w'",
IsAnyWrite w' /\ ___________________ i w’ /\
~SameMicroop w w’ 
/\ EdgesExist [((w, Writeback), (w’, Writeback));

((w’, Writeback), (i, Execute))])).

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read



The No_SameAddrWrites_Btwn_Src_And_Read Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach 

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

DefineMacro "No_SameAddrWrites_Btwn_Src_And_Read":
exists microop "w", (
IsAnyWrite w /\ ___________________ w i /\ ________ w i
/\ AddEdge ((w, Writeback), (i, Execute)) /\
~(exists microop "w'",
IsAnyWrite w' /\ ___________________ i w’ /\
~SameMicroop w w’ 
/\ EdgesExist [((w, Writeback), (w’, Writeback));

((w’, Writeback), (i, Execute))])).

DefineMacro "No_SameAddrWrites_Btwn_Src_And_Read":
exists microop "w", (
IsAnyWrite w /\ SamePhysicalAddress w i /\ SameData w i
/\ AddEdge ((w, Writeback), (i, Execute)) /\
~(exists microop "w'",
IsAnyWrite w' /\ SamePhysicalAddress i w’ /\
~SameMicroop w w’ 
/\ EdgesExist [((w, Writeback), (w’, Writeback));

((w’, Writeback), (i, Execute))])).



The No_SameAddrWrites_Btwn_Src_And_Read Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach 

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

DefineMacro "No_SameAddrWrites_Btwn_Src_And_Read":
exists microop "w", (
IsAnyWrite w /\ ___________________ w i /\ ________ w i
/\ AddEdge ((w, Writeback), (i, Execute)) /\
~(exists microop "w'",
IsAnyWrite w' /\ ___________________ i w’ /\
~SameMicroop w w’ 
/\ EdgesExist [((w, Writeback), (w’, Writeback));

((w’, Writeback), (i, Execute))])).

DefineMacro "No_SameAddrWrites_Btwn_Src_And_Read":
exists microop "w", (
IsAnyWrite w /\ SamePhysicalAddress w i /\ SameData w i
/\ AddEdge ((w, Writeback), (i, Execute)) /\
~(exists microop "w'",
IsAnyWrite w' /\ SamePhysicalAddress i w’ /\
~SameMicroop w w’ 
/\ EdgesExist [((w, Writeback), (w’, Writeback));

((w’, Writeback), (i, Execute))])).

Read i executes after its source 

write w reaches memory…



The No_SameAddrWrites_Btwn_Src_And_Read Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach 

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

DefineMacro "No_SameAddrWrites_Btwn_Src_And_Read":
exists microop "w", (
IsAnyWrite w /\ ___________________ w i /\ ________ w i
/\ AddEdge ((w, Writeback), (i, Execute)) /\
~(exists microop "w'",
IsAnyWrite w' /\ ___________________ i w’ /\
~SameMicroop w w’ 
/\ EdgesExist [((w, Writeback), (w’, Writeback));

((w’, Writeback), (i, Execute))])).

DefineMacro "No_SameAddrWrites_Btwn_Src_And_Read":
exists microop "w", (
IsAnyWrite w /\ SamePhysicalAddress w i /\ SameData w i
/\ AddEdge ((w, Writeback), (i, Execute)) /\
~(exists microop "w'",
IsAnyWrite w' /\ SamePhysicalAddress i w’ /\
~SameMicroop w w’ 
/\ EdgesExist [((w, Writeback), (w’, Writeback));

((w’, Writeback), (i, Execute))])).

…and there are no writes w’ to 

that addr between the source 

write w and the read i.



Putting the Macros together: the Read_Values axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach 

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

Axiom "Read_Values":
forall microops "i",
IsAnyRead i =>
(ExpandMacro BeforeAllWrites \/
(
ExpandMacro No_SameAddrWrites_Btwn_Src_And_Read
/\
ExpandMacro Before_Or_After_Every_SameAddrWrite

)).



Putting the Macros together: the Read_Values axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach 

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

Axiom "Read_Values":
forall microops "i",
IsAnyRead i =>
(ExpandMacro BeforeAllWrites \/
(
ExpandMacro No_SameAddrWrites_Btwn_Src_And_Read
/\
ExpandMacro Before_Or_After_Every_SameAddrWrite

)).

For all reads i (same identifier 

used in the macros)…



Putting the Macros together: the Read_Values axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach 

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

Axiom "Read_Values":
forall microops "i",
IsAnyRead i =>
(ExpandMacro BeforeAllWrites \/
(
ExpandMacro No_SameAddrWrites_Btwn_Src_And_Read
/\
ExpandMacro Before_Or_After_Every_SameAddrWrite

)).

…either the read executes 

before all writes (expand 

macro defined earlier)…



Putting the Macros together: the Read_Values axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach 

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

Axiom "Read_Values":
forall microops "i",
IsAnyRead i =>
(ExpandMacro BeforeAllWrites \/
(
ExpandMacro No_SameAddrWrites_Btwn_Src_And_Read
/\
ExpandMacro Before_Or_After_Every_SameAddrWrite

)).

…or the read reads from 

the latest write to that 

address



µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing 

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

(i3) (i4)

Thread 0 Thread 1

i1: Store [x]  1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

Initially, Mem[x] = 0



µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing 

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

(i3) (i4)

Thread 0 Thread 1

i1: Store [x]  1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

• i3 must be sourced 
from the write i2

• No intervening 
writes; constraint 
satisfied

Initially, Mem[x] = 0



µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing 

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

(i3) (i4)

Thread 0 Thread 1

i1: Store [x]  1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

• i4 must be sourced 
from i1

• But i2 intervenes! 
=> Constraint 
unsatisfiable

Initially, Mem[x] = 0



µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing 

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

(i3) (i4)

Thread 0 Thread 1

i1: Store [x]  1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

• i4 must be sourced 
from i1

• But i2 intervenes! 
=> Constraint 
unsatisfiable

Initially, Mem[x] = 0

Cannot find an acyclic graph that satisfies all 
constraints =>

Forbidden Execution of co-mp is NOT 
observable on µarch!



Test your completed SC uarch!

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach 

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

# Assuming you are in ~/pipecheck_tutorial/uarches/
$ check -i ../tests/SC_tests/co-mp.test -m SC_fillable.uarch

# If your uarch is valid, the above will create co-mp.pdf in your
# current directory (open pdfs from command line with evince)
# To run the solution version of the SC uarch on this test:
# (Note: this will overwrite the co-mp.pdf in your current folder)
$ check -i ../tests/SC_tests/co-mp.test -m SC.uarch –d solutions/

# If you get an error (cannot parse uarch, ps2pdf crashes, etc),
# examine your syntax or ask for help.
# If the outcome is observable (“BUG”), compare the graphs
# generated by the solution uarch to those of your uarch.

# To compare the uarches themselves:
$ diff SC_fillable.uarch solutions/SC.uarch



Run the entire suite of SC litmus tests!
# Assuming you are in ~/pipecheck_tutorial/uarches/
$ run_tests –v 2 -t ../tests/SC_tests/ -m SC_fillable.uarch

# The above will generate *.gv files in ~/pipecheck_tutorial/out/
# for all SC tests, and output overall statistics at the end. If 
# the count for “Buggy” is non-zero, your uarch is faulty. Look for 
the tests that output “BUG” to find out which tests fail.

# You can use gen_graph to convert gv files into PDFs:
$ gen_graph –i <test_gv_file>

# Compare your uarch with the solution SC uarch using diff to find 
# discrepancies:
$ diff SC_fillable.uarch solutions/SC.uarch



PipeCheck Verification Time
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Covered the basics of what PipeCheck can do…

▪But there’s more!

▪PipeCheck can handle heterogeneous pipelines:



Covered the basics of what PipeCheck can do…

▪…and microarchitectural optimizations…

Left: Speculative 
Load Reordering

Right: Speculative 
Fence Retirement



Covered the basics of what PipeCheck can do…

▪…and the methodology is extensible to other ordering types, including…

CCICheck: Coherence orderings that 
affect consistency (with ViCL abstraction)

COATCheck: Addr Translation/Virtual 
Memory orderings that affect consistency



PipeCheck Summary

▪ Fast, automated per-program verification

▪Check implementation against ISA spec

▪Decompose RTL verification into smaller per-axiom sub-problems

• More on that after the coffee break with RTLCheck!

▪Open-Sourced:

https://github.com/daniellustig/coatcheck

Repo from this tutorial:

https://github.com/ymanerka/pipecheck_tutorial

https://github.com/daniellustig/coatcheck
https://github.com/ymanerka/pipecheck_tutorial

