
PipeProof (including hands-on):

Verifying simpleSC across all programs

Does hardware correctly implement ISA MCM?

Coherence Protocol (SWMR, DVI, etc.)

Microarchitecture

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

SC/TSO/RISC-V MCM?

?

Litmus Test

(for the litmus test)

Does hardware correctly implement ISA MCM?

Coherence Protocol (SWMR, DVI, etc.)

Microarchitecture

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

SC/TSO/RISC-V MCM?

?

PipeCheck vs PipeProof
▪PipeCheck:

▪PipeProof:

Microarch. spec µarch correct for
all programs!PipeProof

Auxiliary Inputs

Microarch. spec µarch correct for
litmus testPipeCheck

Litmus Test

Why do we need PipeProof?
▪Test-based verification only checks that tested programs run correctly!

▪Open question: Does a suite of litmus tests cover all µarch bugs?

▪Example: Remove EnforceWritePPO axiom from simpleSC

• /home/check/pipecheck_tutorial/uarches/SC_fillable.uarch

• Some orderings between same-core stores and loads removed, violating SC

• Will bug be detected? Depends what tests you run!

Axiom "EnforceWritePPO":
forall microop "w",
forall microop "i",
(IsAnyWrite w /\ SameCore w i

/\ EdgeExists((w, Fetch), (i, Fetch), "")) =>
AddEdge ((w, Writeback), (i, Execute)).

(i1) (i2)

IF

EX

WB

(i3) (i4) (i1) (i2)

IF

EX

WB

(i3) (i4)

Cyclic => Still unobservable

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Forbid: r1 = 1, r2 = 0

mp Litmus Test

Core 0 Core 1

x = 1;
r1 = y;

y = 1;
r2 = x;

Forbid: r1 = 0, r2 = 0

sb Litmus Test

po porf

fr

po pofr

fr

5

SimpleSC without EnforceWritePPO

(i1) (i2)

IF

EX

WB

(i3) (i4) (i1) (i2)

IF

EX

WB

(i3) (i4)

Cyclic => Still unobservable Acyclic => BUG!

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Forbid: r1 = 1, r2 = 0

mp Litmus Test

Core 0 Core 1

x = 1;
r1 = y;

y = 1;
r2 = x;

Forbid: r1 = 0, r2 = 0

sb Litmus Test

po porf

fr

po pofr

fr

5

SimpleSC without EnforceWritePPO

(i1) (i2)

IF

EX

WB

(i3) (i4) (i1) (i2)

IF

EX

WB

(i3) (i4)

Cyclic => Still unobservable Acyclic => BUG!

Core 0 Core 1

x = 1;
y = 1;

r1 = y;
r2 = x;

Forbid: r1 = 1, r2 = 0

mp Litmus Test

Core 0 Core 1

x = 1;
r1 = y;

y = 1;
r2 = x;

Forbid: r1 = 0, r2 = 0

sb Litmus Test

po porf

fr

po pofr

fr

5

SimpleSC without EnforceWritePPO

Different tests catch different bugs!

To catch all bugs, must verify across all programs!

Verifying Across All Possible Programs
▪Are all forbidden programs microarchitecturally unobservable?

• If so, then microarchitecture is correct

▪ Infinite number of forbidden programs

• E.g.: For SC, must check all possibilities of 𝑐𝑦𝑐𝑙𝑖𝑐(𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟)

▪How are these ISA-level patterns related to litmus tests?

i1

rf

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

co

i2 i4
po

corf
i1 i3

fr

i2 i4
po …

6

Symbolic Analysis: Generalise to ISA-Level Cycles

▪Each forbidden litmus test is an instance of an ISA-level cycle

▪PipeProof verifies the ISA-level cycles rather than litmus tests

• Instructions in the ISA-level cycle are symbolic (no concrete addresses/values)

• Verification of ISA-level cycle checks it for all possible addresses/values!

Thread 0 Thread 1

i1: Store [x]  1

i2: Store [y]  1

i3: r1 = Load [y]

i4: r2 = Load [x]

SC Forbids: r1=1, r2=0

mp

Symbolic Analysis: Generalise to ISA-Level Cycles

▪Each forbidden litmus test is an instance of an ISA-level cycle

▪PipeProof verifies the ISA-level cycles rather than litmus tests

• Instructions in the ISA-level cycle are symbolic (no concrete addresses/values)

• Verification of ISA-level cycle checks it for all possible addresses/values!

Thread 0 Thread 1

i1: Store [x]  1

i2: Store [y]  1

i3: r1 = Load [y]

i4: r2 = Load [x]

SC Forbids: r1=1, r2=0

mp

po
rf fr

po

(i1) (i2) (i3) (i4)
po porf

fr

Symbolic Analysis: Generalise to ISA-Level Cycles

▪Each forbidden litmus test is an instance of an ISA-level cycle

▪PipeProof verifies the ISA-level cycles rather than litmus tests

• Instructions in the ISA-level cycle are symbolic (no concrete addresses/values)

• Verification of ISA-level cycle checks it for all possible addresses/values!

Thread 0 Thread 1

i1: Store [x]  1

i2: Store [y]  1

i3: r1 = Load [y]

i4: r2 = Load [x]

SC Forbids: r1=1, r2=0

mp

Thread 0 Thread 1

i1: Store [x] 1

i2: Store [z]  2

i3: r1 = Load [z]

i4: r2 = Load [x]

SC Forbids: r1=2, r2=0

mp+changedVals

po
rf fr

po

(i1) (i2) (i3) (i4)
po porf

fr

Symbolic Analysis: Generalise to ISA-Level Cycles

▪Each forbidden litmus test is an instance of an ISA-level cycle

▪PipeProof verifies the ISA-level cycles rather than litmus tests

• Instructions in the ISA-level cycle are symbolic (no concrete addresses/values)

• Verification of ISA-level cycle checks it for all possible addresses/values!

Thread 0 Thread 1

i1: Store [x]  1

i2: Store [y]  1

i3: r1 = Load [y]

i4: r2 = Load [x]

SC Forbids: r1=1, r2=0

mp

Thread 0 Thread 1

i1: Store [x] 1

i2: Store [z]  2

i3: r1 = Load [z]

i4: r2 = Load [x]

SC Forbids: r1=2, r2=0

mp+changedVals

po
rf fr

po po
rf fr

po

(i1) (i2) (i3) (i4)
po porf

fr

PipeProof: What’s Needed
1. Link ISA-level MCM to microarchitectural specification

• ISA Edge Mapping

2. Add universal constraints that symbolic analysis must respect

• Theory Lemmas

3. A finite representation of all forbidden ISA-level cycles

• Transitive Chain (TC) Abstraction

4. Automated refinement checking of the finite representation

• Microarchitectural Correctness Proof

• Chain invariants (for termination)

Mapping ISA-Level Edges to Microarchitecture
▪Open /home/check/pipeproof_tutorial/uarches/simpleSC_fill.uarch

▪Translate each edge in ISA-level cycle to microarchitectural constraints

▪Do so with user-provided Mapping Axioms

▪Example: Mapping of 𝑝𝑜 edges

Axiom "Mapping_po":
forall microop "i",
forall microop "j",
(HasDependency po i j =>

AddEdge ((i, Fetch), (j, Fetch), "po_arch", "blue")).

i1 i2

IF

EX

WB

po

Mapping ISA-Level Edges to Microarchitecture
▪Open /home/check/pipeproof_tutorial/uarches/simpleSC_fill.uarch

▪Translate each edge in ISA-level cycle to microarchitectural constraints

▪Do so with user-provided Mapping Axioms

▪Example: Mapping of 𝑝𝑜 edges

Axiom "Mapping_po":
forall microop "i",
forall microop "j",
(HasDependency po i j =>

AddEdge ((i, Fetch), (j, Fetch), "po_arch", "blue")).

i1 i2

IF

EX

WB

po

Check whether a po edge

from i to j exists

Mapping ISA-Level Edges to Microarchitecture
▪Open /home/check/pipeproof_tutorial/uarches/simpleSC_fill.uarch

▪Translate each edge in ISA-level cycle to microarchitectural constraints

▪Do so with user-provided Mapping Axioms

▪Example: Mapping of 𝑝𝑜 edges

Axiom "Mapping_po":
forall microop "i",
forall microop "j",
(HasDependency po i j =>

AddEdge ((i, Fetch), (j, Fetch), "po_arch", "blue")).

i1 i2

IF

EX

WB

po

Mapping ISA-Level Edges to Microarchitecture
▪Open /home/check/pipeproof_tutorial/uarches/simpleSC_fill.uarch

▪Translate each edge in ISA-level cycle to microarchitectural constraints

▪Do so with user-provided Mapping Axioms

▪Example: Mapping of 𝑝𝑜 edges

Axiom "Mapping_po":
forall microop "i",
forall microop "j",
(HasDependency po i j =>

AddEdge ((i, Fetch), (j, Fetch), "po_arch", "blue")).

i1 i2

IF

EX

WB

po

Blue edges between EX and WB stages added by
other FIFO axioms (refer to µspec file)

Axiom "Mapping_co":
forall microop "i",
forall microop "j",
(HasDependency co i j => SamePhysicalAddress i j /\

AddEdge ((i, _________), (j, _________), "co_arch")).

Mapping Axioms Hands-on
▪How about mapping 𝑐𝑜 (coherence order) edges?

▪Hint:

• 𝑝𝑜 edge mapping was similar to PO_Fetch axiom

• 𝑐𝑜 edge mapping is based on WriteSerialization axiom

i1 i2

IF

EX

WB

co

Axiom "Mapping_co":
forall microop "i",
forall microop "j",
(HasDependency co i j => SamePhysicalAddress i j /\

AddEdge ((i, _________), (j, _________), "co_arch")).

Mapping Axioms Hands-on
▪How about mapping 𝑐𝑜 (coherence order) edges?

▪Hint:

• 𝑝𝑜 edge mapping was similar to PO_Fetch axiom

• 𝑐𝑜 edge mapping is based on WriteSerialization axiom

Axiom "Mapping_co":
forall microop "i",
forall microop "j",
(HasDependency co i j => SamePhysicalAddress i j /\

AddEdge ((i, Writeback), (j, Writeback), "co_arch")).

i1 i2

IF

EX

WB

co

ISA Edge Mappings for SimpleSC
▪Refer to simpleSC_fill.uarch to see mapping axioms for 𝑟𝑓, 𝑓𝑟

i1 i2

IF

EX

WB

po
i1 i2

IF

EX

WB

rf
i1 i2

IF

EX

WB

fr
i1 i2

IF

EX

WB

co

PipeProof: What’s Needed
1. Link ISA-level MCM to microarchitectural specification

• ISA Edge Mapping

2. Add universal constraints that symbolic analysis must respect

• Theory Lemmas

3. A finite representation of all forbidden ISA-level cycles

• Transitive Chain (TC) Abstraction

4. Automated refinement checking of the finite representation

• Microarchitectural Correctness Proof

• Chain invariants (for termination)

Symbolic Analysis Requires Theory Lemmas
▪ Symbolic analysis: predicates are just variables that can be true or false

• “Theory Lemmas” necessary to enforce “universal” laws on predicates

▪Example: Is an instruction guaranteed to be a read or write?

i: r1 = Load [x]

Concrete: Look at instruction -> IsAnyRead i is true

Symbolic Analysis Requires Theory Lemmas
▪ Symbolic analysis: predicates are just variables that can be true or false

• “Theory Lemmas” necessary to enforce “universal” laws on predicates

▪Example: Is an instruction guaranteed to be a read or write?

i: r1 = Load [x]

Concrete: Look at instruction -> IsAnyRead i is true

Symbolic: We now know nothing about the instruction!
Both IsAnyRead i and IsAnyWrite i could be false! (even though this can’t happen in reality)

i

Symbolic Analysis Requires Theory Lemmas
▪ Symbolic analysis: predicates are just variables that can be true or false

• “Theory Lemmas” necessary to enforce “universal” laws on predicates

▪Example: Is an instruction guaranteed to be a read or write?

i: r1 = Load [x]

Concrete: Look at instruction -> IsAnyRead i is true

Symbolic: We now know nothing about the instruction!
Both IsAnyRead i and IsAnyWrite i could be false! (even though this can’t happen in reality)

Axiom “Theory_Lemmas":
forall microop "i",
...
IsAnyRead i \/ IsAnyWrite i).

Need Additional Theory Lemma to enforce that op is either a read or write!

i

Theory Lemmas: Hands-on
i: Store [x]  1

j: Store [x]  2

k: Store [x]  3
co co

Concrete: Directly compare instructions i and k -> SamePhysicalAddress i k is true

Theory Lemmas: Hands-on
i: Store [x]  1

j: Store [x]  2

k: Store [x]  3
co co

Concrete: Directly compare instructions i and k -> SamePhysicalAddress i k is true

Symbolic: co edge mapping gives SamePhysicalAddress i j and SamePhysicalAddress j k
But SamePhysicalAddress i k could be false! (even though this can never happen in reality)

i

j

k

Theory Lemmas: Hands-on
i: Store [x]  1

j: Store [x]  2

k: Store [x]  3
co co

Concrete: Directly compare instructions i and k -> SamePhysicalAddress i k is true

Symbolic: co edge mapping gives SamePhysicalAddress i j and SamePhysicalAddress j k
But SamePhysicalAddress i k could be false! (even though this can never happen in reality)

i

j

k

Axiom “Theory_Lemmas":
forall microop "i",
...
forall microop "j",
...
forall microop “k”,
(SamePhysicalAddress _ _ /\ SamePhysicalAddress _ _ =>
SamePhysicalAddress _ _)...

Need Additional Theory Lemma for Transitivity of SamePhysicalAddress!

Theory Lemmas: Hands-on
i: Store [x]  1

j: Store [x]  2

k: Store [x]  3
co co

Concrete: Directly compare instructions i and k -> SamePhysicalAddress i k is true

Symbolic: co edge mapping gives SamePhysicalAddress i j and SamePhysicalAddress j k
But SamePhysicalAddress i k could be false! (even though this can never happen in reality)

i

j

k

Axiom “Theory_Lemmas":
forall microop "i",
...
forall microop "j",
...
forall microop “k”,
(SamePhysicalAddress _ _ /\ SamePhysicalAddress _ _ =>
SamePhysicalAddress _ _)...

Need Additional Theory Lemma for Transitivity of SamePhysicalAddress!

Axiom “Theory_Lemmas":
forall microop "i",
...
forall microop "j",
...
forall microop “k”,
(SamePhysicalAddress i j /\ SamePhysicalAddress j k =>
SamePhysicalAddress i k)...

PipeProof: What’s Needed
1. Link ISA-level MCM to microarchitectural specification

• ISA Edge Mapping

2. Add universal constraints that symbolic analysis must respect

• Theory Lemmas

3. A finite representation of all forbidden ISA-level cycles

• Transitive Chain (TC) Abstraction

4. Automated refinement checking of the finite representation

• Microarchitectural Correctness Proof

• Chain invariants (for termination)

Verifying Across All Possible Programs
▪ Infinite number of forbidden programs

• E.g.: For SC, must check all possibilities of 𝑐𝑦𝑐𝑙𝑖𝑐(𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟)

▪Prove using abstractions and induction

• Based on Counterexample-guided abstraction refinement [Clarke et al. CAV 2000]

16

Verifying Across All Possible Programs
▪ Infinite number of forbidden programs

• E.g.: For SC, must check all possibilities of 𝑐𝑦𝑐𝑙𝑖𝑐(𝑝𝑜 ∪ 𝑐𝑜 ∪ 𝑟𝑓 ∪ 𝑓𝑟)

▪Prove using abstractions and induction

• Based on Counterexample-guided abstraction refinement [Clarke et al. CAV 2000]

i1

rf

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

co

i2 i4
po

corf
i1 i3

fr

i2 i4
po …

16

All non-unary cycles containing fr
(Infinite set)

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

The Transitive Chain (TC) Abstraction

17

All non-unary cycles containing fr
(Infinite set)

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

The Transitive Chain (TC) Abstraction

Cycle = Transitive Chain (sequence)
+ Loopback edge (fr)

17

i1 in
r1…n-1

fr

All non-unary cycles containing fr
(Infinite set)

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

The Transitive Chain (TC) Abstraction
Transitive chain (sequence)

of ISA-level edges

Cycle = Transitive Chain (sequence)
+ Loopback edge (fr)

17

i1 in
r1…n-1

fr

All non-unary cycles containing fr
(Infinite set)

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

Some µhb
edge from i1

to in

(transitive
connection)

IF

EX

WB

The Transitive Chain (TC) Abstraction

Cycle = Transitive Chain (sequence)
+ Loopback edge (fr)

ISA-level transitive chain =>
Microarch. level transitive connection

17

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

The Transitive Chain (TC) Abstraction

18

Infinite!

⟹
Using

TC Abstraction

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

The Transitive Chain (TC) Abstraction

18

Finite!Infinite!

i1 in
r1…n-1

fr

Some µhb
edge from i1

to in

(transitive
connection)

IF

EX

WB

3 x 3 = 9 possible
transitive connections

from i1 to in

⟹
Using

TC Abstraction

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

The Transitive Chain (TC) Abstraction

18

Finite!Infinite!

⟹
Using

TC Abstraction

i1

fr

i2
po

i1 i3

fr

i2
poco

po rf
i1 i3

fr

i2 i4
po

corf
i1 i3

fr

i2 i4
po

…

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

i1 in
IF

EX

WB

fr
i1 in

IF

EX

WB

fr
i1 in

IF

EX

WB

fr

Abstraction soundness
automatically verified
as a supporting proof!

The Transitive Chain (TC) Abstraction

18

Finite!Infinite!

▪Ensure that ISA-level pattern and µarch. support TC Abstraction

▪Base case: Do initial ISA-level edges guarantee connection?

▪ Inductive case: Extend transitive chain => extend transitive connection?

i1 i2

IF

EX

WB

po
i1 i2

IF

EX

WB

rf
i1 i2

IF

EX

WB

fr
i1 i2

IF

EX

WB

co

⟹
i1 in

IF

EX

WB

rn in+1

Some
Tran

Conn.

i1 in+1

IF

EX

WB

Some Transitive
Connection

Transitive Chain (TC) Abstraction Support Proof

19

PipeProof: What’s Needed
1. Link ISA-level MCM to microarchitectural specification

• ISA Edge Mapping

2. Add universal constraints that symbolic analysis must respect

• Theory Lemmas

3. A finite representation of all forbidden ISA-level cycles

• Transitive Chain (TC) Abstraction

4. Automated refinement checking of the finite representation

• Microarchitectural Correctness Proof

• Chain invariants (for termination)

i1 in

fr

Some µhb
edge from

i1 to in
(transitive

connection)

All possible
transitive

connections

Other ISA-level
cycles…

i1 in

po

Some µhb
edge from

i1 to in
(transitive

connection)

Cycles containing fr

Cycles containing po

Microarchitectural Correctness Proof

21

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from

i1 to in
(transitive

connection)

All possible
transitive

connections

Other transitive
connections…

Other ISA-level
cycles…

i1 in

po

Some µhb
edge from

i1 to in
(transitive

connection)

Cycles containing fr

Cycles containing po

Microarchitectural Correctness Proof

21

i1 in
IF

EX

WB

fr

?AbsCounterX

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from

i1 to in
(transitive

connection)

All possible
transitive

connections

Other transitive
connections…

Other ISA-level
cycles…

i1 in

po

Some µhb
edge from

i1 to in
(transitive

connection)

Cycles containing fr

Cycles containing po

Acyclic graph with transitive connection =>

Abstract Counterexample (i.e. possible bug)

Microarchitectural Correctness Proof

21

i1 in
IF

EX

WB

fr

?AbsCounterX

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from

i1 to in
(transitive

connection)

All possible
transitive

connections

Other transitive
connections…

Other ISA-level
cycles…

i1 in

po

Some µhb
edge from

i1 to in
(transitive

connection)

Cycles containing fr

Cycles containing po

Transitive connection (green edge) may

represent one or multiple ISA-level edges

Microarchitectural Correctness Proof

21

i1 in
IF

EX

WB

fr

?AbsCounterX

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from

i1 to in
(transitive

connection)

Try to Concretize (Replace
transitive connection

with one ISA-level edge)

Microarch Buggy,
Return Counterexample

Observable

All possible
transitive

connections

Other transitive
connections…

Other ISA-level
cycles…

i1 in

po

Some µhb
edge from

i1 to in
(transitive

connection)

Cycles containing fr

Cycles containing po

Transitive connection (green edge) may

represent one or multiple ISA-level edges

Microarchitectural Correctness Proof

21

i1 in
IF

EX

WB

fr

?AbsCounterX

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from

i1 to in
(transitive

connection)

Try to Concretize (Replace
transitive connection

with one ISA-level edge)

Unobs.

Microarch Buggy,
Return Counterexample

Observable

Consider all
Decompositions

(Inductively break
down Transitive Chain)

All possible
transitive

connections

Other transitive
connections…

Other ISA-level
cycles…

i1 in

po

Some µhb
edge from

i1 to in
(transitive

connection)

Cycles containing fr

Cycles containing po

Transitive connection (green edge) may

represent one or multiple ISA-level edges

Microarchitectural Correctness Proof

21

i1 in
IF

EX

WB

fr

?AbsCounterX

i1 in

IF

EX

WB

fr
✓NoDecomp

i1 in

fr

Some µhb
edge from

i1 to in
(transitive

connection)

Try to Concretize (Replace
transitive connection

with one ISA-level edge)

Unobs.

Microarch Buggy,
Return Counterexample

Observable

Consider all
Decompositions

(Inductively break
down Transitive Chain)

All possible
transitive

connections

Other transitive
connections…

Other ISA-level
cycles…

“Refinement Loop”

i1 in

po

Some µhb
edge from

i1 to in
(transitive

connection)

Cycles containing fr

Cycles containing po

Transitive connection (green edge) may

represent one or multiple ISA-level edges

Microarchitectural Correctness Proof

21

i1 in

IF

EX

WB

fr
?AbsCounterX

Refinement Loop: Concretization
▪Replaces transitive connection with a single ISA-level edge

• All concretizations must be unobservable

• Observable concretizations are counterexamples (bugs)

22

i1 in

IF

EX

WB

fr

Refinement Loop: Concretization
▪Replaces transitive connection with a single ISA-level edge

• All concretizations must be unobservable

• Observable concretizations are counterexamples (bugs)

rf

22

i1 in

IF

EX

WB

fr
po

…i1 in

IF

EX

WB

fr

Refinement Loop: Concretization
▪Replaces transitive connection with a single ISA-level edge

• All concretizations must be unobservable

• Observable concretizations are counterexamples (bugs)

rf

22

p

i1

IF

EX

WB

r

q

in

fr
?AbsCounterX

Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable

23

factorial(n) factorial(n-1) *= n

p

i1

IF

EX

WB

r

q

in

fr
?AbsCounterX

Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable

23

factorial(n) factorial(n-1) *= n

Chain of length n Chain of length n-1 “Peeled-off” edge= +

p

i1

IF

EX

WB

r

q

in

fr

✓

Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable

p

i1

s

in-1

IF

EX

WB

rf

r

q

in

fr

23

factorial(n) factorial(n-1) *= n

Chain of length n Chain of length n-1 “Peeled-off” edge= +

…
p

i1

IF

EX

WB

r

q

in

fr

p

i1

t

i2

IF

EX

WB

co

r

q

in

fr

✓

Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable

p

i1

s

in-1

IF

EX

WB

rf

r

q

in

fr

23

factorial(n) factorial(n-1) *= n

Chain of length n Chain of length n-1 “Peeled-off” edge= +

…
p

i1

IF

EX

WB

r

q

in

fr

p

i1

t

i2

IF

EX

WB

co

r

q

in

fr

✓ ?

Refinement Loop: Decomposition
▪ Inductively break down transitive chain

• Additional constraints may be enough to make execution unobservable

p

i1

s

in-1

IF

EX

WB

rf

r

q

in

fr

If decomposition is abstract

counterexample, repeat concretization

and decomposition!

23

factorial(n) factorial(n-1) *= n

Chain of length n Chain of length n-1 “Peeled-off” edge= +

Hands-on: Let’s Run PipeProof!

▪What happens?

Assuming you are in ~/pipeproof_tutorial/uarches/
$ prove_uarch -m simpleSC_fill.uarch -i SC -n

Hands-on: Let’s Run PipeProof!
▪PipeProof does not terminate; why?

...
// Checking Path: (1/1, fr;)
// Checking Path: (1/1, fr;) (1/1, po;fr;)
// Checking Path: (1/1, fr;) (1/1, po;fr;) (1/1, po;po;fr;)
// Checking Path: (1/1, fr;) (1/1, po;fr;) (1/1, po;po;fr;) (1/1,
po;po;po;fr;)
...

Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support proof)

Abstract Counterexample

i1 i3 i4
fr

i5
po

26

Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support proof)

Repeating ISA-Level Pattern

i1 i3 i4
fr

i5
po

i1 i3 i4
fr

i2
po

i5
po

26

Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support proof)

Repeating ISA-Level Pattern

i1 i3 i4
fr

i5
po

i1 i3 i4
fr

i2
po

i5
po

Can continue
decomposing

in this way
forever!

26

Chain Invariants
▪Abstractly represent repeated ISA-level patterns

▪ Sometimes needed for refinement loop to terminate

▪ Inductively proven by PipeProof before their use in proof algorithms

▪Example: checking for edge from i1 to i5 (TC abstraction support proof)

Chain Invariant Applied

i1 i3 i4
fr

i5
po

i1 i3 i4
fr

i2
po

i5
po

i1 i4
fr

i2
po_plus

i5

-po_plus = arbitrary
number of repetitions of po
-Next edge peeled off will
be something other than po

26

Adding the Chain Invariant for po+
▪Uncomment the invariant at the end of simpleSC_fill.uarch:

▪Now re-run PipeProof:

▪ Should be proven in about a minute on the VM

Axiom "Invariant_poplus":
forall microop "i",
forall microop "j",
HasDependency po_plus i j =>

(AddEdge ((i, Fetch), (j, Fetch), "") /\ SameCore i j).

Assuming you are in ~/pipeproof_tutorial/uarches/
$ prove_uarch -m simpleSC_fill.uarch -i SC

PipeProof Block Diagram
Microarchitecture

Ordering Spec.
ISA-Level

MCM Spec.

PipeProof

Result: All-Program MCM Correctness Proof?
Counterexample found?

ISA Edge ->
Microarch. Mapping

Microarch.
Correctness

Proof

PassTransitive Chain
Abstraction

Support Proof

Generate
Counterexample

Fail

Chain
Invariants

Proof of
Chain Invariants

Fail

Pass

Theory
Lemmas

PipeProof Does the Difficult Stuff for You!
▪Users simply provide axioms, mappings, theory lemmas, and invariants

▪PipeProof takes care of:

• Proving TC Abstraction soundness

• Proving any chain invariants

• Refining abstraction (concretization and decomposition)

• Inductively generating ISA-level cycles and covering all possibilities

▪Architects can use PipeProof; not just for formal methods experts!

PipeProof: TSO Case Study
▪Provided in VM as solutions/simpleTSO.uarch

• Can try on your own time

• Requires additional ISA-level relations, theory lemmas, and chain invariants

• Will take at least 41 minutes to verify

simpleTSO simpleTSO
(w/ Covering Sets + Memoization)

Total Time Timeout 2449.7 sec (≈ 41 mins)

simpleSC simpleSC
(w/ Covering Sets + Memoization)

Total Time 225.9 sec 19.1 sec

Results
▪Ran PipeProof on simpleSC (SC) and simpleTSO (TSO1) µarches

• 3-stage in-order pipelines

▪TSO verification made feasible by optimizations

• Explicitly checking all decompositions => case explosion

• Covering Sets Optimization (eliminate redundant transitive connections)

• Memoization (eliminate previously checked ISA-level cycles)

311TSO (Total Store Order) is the MCM of Intel x86 processors. It relaxes Store->Load ordering.

PipeProof Takeaways
▪Automated All-Program Microarchitectural MCM Verification

• Designers no longer need to choose between completeness and automation

• Can verify microarchitectures themselves, before RTL is written!

▪Based on techniques from formal methods (CEGAR) [Clarke et al. CAV 2000]

▪Transitive Chain (TC) Abstraction models infinite set of executions

▪Open-source: https://github.com/ymanerka/pipeproof

▪Accolades:

• Nominated for Best Paper at MICRO 2018

• “Hon. Mention” from 2018 IEEE Micro Top Picks of Comp. Arch. Conferences

https://github.com/ymanerka/pipeproof

Backup Slides

Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections

• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive connections

x

y

i1

z

in

IF

EX

WB

fr

x

y

i1

z

in

IF

EX

WB

fr

BA

Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections

• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive connections

x

y

i1

z

in

IF

EX

WB

fr

x

y

i1

z

in

IF

EX

WB

fr

BA

Graph A has an edge
from x→z (tran conn.)

Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections

• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive connections

x

y

i1

z

in

IF

EX

WB

fr

x

y

i1

z

in

IF

EX

WB

fr

BA

Graph B has edges from
y→z (tran conn.) and
x→z (by transitivity)

Graph A has an edge
from x→z (tran conn.)

Covering Sets Optimization
▪Must verify across all possible transitive connections

▪ Each decomposition creates a new set of transitive connections

• Can quickly lead to a case explosion

▪ The Covering Sets Optimization eliminates redundant transitive connections

x

y

i1

z

in

IF

EX

WB

fr

x

y

i1

z

in

IF

EX

WB

fr

BA

Graph B has edges from
y→z (tran conn.) and
x→z (by transitivity)

Graph A has an edge
from x→z (tran conn.)

Correctness of A => Correctness of B (since B contains A’s tran conn.)
Checking B explicitly is redundant!

Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already
been verified

i1

fr

i2

i3

i4

rf

po po

Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already
been verified

i1 in

IF

EX

WB

fr

Some
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

fr

Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already
been verified

i1 in

IF

EX

WB

fr

Some
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

i1 in

IF

EX

WB

po

Some
Tran.
Conn.

po po

Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already
been verified

i1 in

IF

EX

WB

fr

Some
Tran.
Conn.

i1 in

IF

EX

WB

rf

Some
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

i1 in

IF

EX

WB

po

Some
Tran.
Conn.rf

Same cycle is checked 3 times!

Memoization Optimization
▪Base PipeProof algorithm examines some cycles multiple times

▪Memoization eliminates redundant checks of cycles that have already
been verified

i1 in

IF

EX

WB

fr

Some
Tran.
Conn.

i1 in

IF

EX

WB

rf

Some
Tran.
Conn.

i1

fr

i2

i3

i4

rf

po po

i1 in

IF

EX

WB

po

Some
Tran.
Conn.rf

Procedure: If all ISA-level cycles containing edge ri have been checked,
do not peel off ri edges when checking subsequent cycles

Same cycle is checked 3 times!

The Adequate Model Over-Approximation
▪Addition of an instruction can make unobservable execution observable!

▪Need to work with over-approximation of microarchitectural constraints

▪PipeProof sets all exists clauses to true as its over-approximation

t

i1 i2

IF

EX

WB

fr

v

i3
co

SubsetExec

u

t

i1 i2

IF

EX

WB

fr

v

i3

SubsetWithExternal

u

i4
rf

co

Filtering Invalid Decompositions
▪When decomposing a transitive connection, the decomposition should

guarantee the transitive connections of its parent abstract cexes.

▪Decompositions that do not do this are invalid and filtered out

p

i1

r

q

in

IF

EX

WB

fr

?AbsCounterX

p

i1 in-1

IF

EX

WB

rf

r

q

in

fr
Invalid Decomposition

PipeProof Block Diagram
Microarchitecture

Ordering Spec.
ISA-Level

MCM Spec.

PipeProof

ISA Edge ->
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain
Invariants

Transitive Chain
Abstraction

Support Proof

Microarch.
Correctness

Proof

Cex. Generation

Proof of
Chain Invariants

FailFail

PassPass

PipeProof Block Diagram
Microarchitecture

Ordering Spec.
ISA-Level

MCM Spec.

PipeProof

ISA Edge ->
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain
Invariants

Transitive Chain
Abstraction

Support Proof

Microarch.
Correctness

Proof

Cex. Generation

Proof of
Chain Invariants

FailFail

PassPass

PipeProof Block Diagram
Microarchitecture

Ordering Spec.
ISA-Level

MCM Spec.

PipeProof

ISA Edge ->
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain
Invariants

Transitive Chain
Abstraction

Support Proof

Microarch.
Correctness

Proof

Cex. Generation

Proof of
Chain Invariants

FailFail

PassPass

Links ISA-
level and

µarch
executions

PipeProof Block Diagram
Microarchitecture

Ordering Spec.
ISA-Level

MCM Spec.

PipeProof

ISA Edge ->
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain
Invariants

Transitive Chain
Abstraction

Support Proof

Microarch.
Correctness

Proof

Cex. Generation

Proof of
Chain Invariants

FailFail

PassPass

Represent
repeated
ISA-level
patterns

PipeProof Block Diagram
Microarchitecture

Ordering Spec.
ISA-Level

MCM Spec.

PipeProof

ISA Edge ->
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain
Invariants

Transitive Chain
Abstraction

Support Proof

Microarch.
Correctness

Proof

Cex. Generation

Proof of
Chain Invariants

FailFail

PassPass

If design can’t be verified, a counterexample (a forbidden
execution that is observable) is often returned

PipeProof Block Diagram
Microarchitecture

Ordering Spec.
ISA-Level

MCM Spec.

PipeProof

ISA Edge ->
Microarch. Mapping

Result: All-Program MCM Correctness Proof?
Counterexample found?

Chain
Invariants

Transitive Chain
Abstraction

Support Proof

Microarch.
Correctness

Proof

Cex. Generation

Proof of
Chain Invariants

FailFail

PassPass
Supporting

proofs provide
foundation for

correctness
proof

