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The Check Suite: Tools For Verifying Memory
Orderings and their Security Implications

High-Level Languages (HLL)

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

CheckMate _
COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

[IEEE Micro
Top Picks] Architecture (ISA)
PibeProof PipeCheck [Micro ‘14] [IEEE MICRO Top Picks]
p' ( Microarchitecture CCICheck [Micro “15] [Nominated for Best Paper Award]
[Micro ‘18]
[Best Paper Nominee. , RTLCheck [Micro ‘17] [IEEE MICRO Top Picks Honorable Mention]
IEEE Micro Top Picks RTL (e.g. Verilog)

Honorable Mention]

For more info: check.cs.Princeton.edu



The Check Suite: Tools For Verifying Memory
Orderings and their Security Implications

Microarchitecture

RTLCheck [Micro ‘17] [IEEE MICRO Top Picks Honorable Mention]

¢

MCM Verification of
Verilog RTL

RTL (e.g. Verilog)

For more info: check.cs.Princeton.edu



What if | want to verify RTL (Verilog)?

ISA-Level MCM
fr
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acyclic oUcoUTrfU fr
1 po 3 rf isﬁ’& y (p )
Microarchitectural Orderings I I Verlfled with
(i2) (i2) (i3 (14 PipeProof

IF Axiom "PO Fetch":

forall microop "il", "i2",

SameCore il i2 /\ ProgramOrder il i2 =>
AddEdge ((il1, IF), (i2, IF)).

EX

wB
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® ..but usually ignores memory consistency!
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® ..but usually ignores memory consistency!

/ISA-FormaI [Reid et al. CAV 2016?

-Instr. Operational Semantics

\{ No MCM verification! L

Kami

KDOGReL [Stewart et al. DIFTS 2014] A
-Memory subsystem transactions
LNO multicore MICM verification!L

[Vijayaraghavan et al. CAV 2015] [Choi et al. ICFP 2017]
-MCM correctness for all programs, but...

[ Needs Bluespec design and manual proofs! J




Lack of automated memory

consistency verification at RTL!




RTLCheck: Checking RTL Consistency Orderings
" RTLCheck enables automated checking of Verilog RTL

against uspec axioms for litmus test suites

pspec axioms Litmus Test
Axiom "PO_FetCh": Core © Core 1 :
forall microop "i1", "i2", Mapping
SameCore il i2 /\ ProgramOrder i1l i2 => || X = 15 |rl =y; Functions
AddEdge ((il, IF), (i2, IF)). y =1; |r2 = Xx;

Microarchitecture

Processor RTL (Verilog)

assert property @(posedge clk) (...)

Test-specific Temporal RTL Properties

[Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael Pellauer. RTLCheck: Verifying the Memory Consistency of RTL Designs.
The 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), October 2017.]
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SystemVerilog Assertions (SVA)

" SVA: Industry standard for RTL verification, e.g.: ARM [Reid et al. CAV 2016]

e Based on Linear Temporal Logic (LTL) with regular operators
* Commercial tools (e.g. JasperGold) can formally verify SVA assertions
" Translating pspec to SVA => RTL MCM verification using industry flows
" But it’s not that simple!

SVA Assertions
assert property @(posedge clk) (...)

RTL Impl.

Cadence JasperGold

Assertion Proven?
Counterexample found? 7
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Meaning can be Lost in Translation!

DB
(Caution: Slippery Floor)

[Image: Barbara Younger]
[Inspiration: Tae Jun Ham]
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= Tricky to translate pspec to SVA while maintaining puspec semantics

= SVA Verifiers (JasperGold) don’t implement full SVA spec!

e Causes further complications

=" Example: Outcome Filtering

* Filtering litmus test executions to those that have particular values for loads




" n this case, outcome filtering is easy and efficient

= Always know what the load values are

* Can draw (red) edges based on these values

(i1) (i2) (i3) (i4)

IE mp litmus test
Core © Core 1
(i1) x =1; | (i3) rl = y;
EX (i2) y = 1; | (i4) r2 = x;

WB
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" n this case, outcome filtering is easy and efficient

= Always know what the load values are

* Can draw (red) edges based on these values

(i1)

(i2)

(i3)

(i4)

mp litmus test

IF
Core © Core 1
(il1) x =1; | (i3) rl = y;
EX (i2) y = 1; | (18) r2 = x;
S ———————————
SC Forbids: rl1 =1, r2 = 0

WB




=" Don’t know load values until the end of the execution!

" Must look into future to ensure we’re checking the right executions

mp litmus test

Core © Core 1
(i1) x = 1; | (i3) rl = y;
(i2) y = 1; | (i4) r2 = x;

SC Forbids: rl =1, r2 = 0




=" Don’t know load values until the end of the execution!

" Must look into future to ensure we’re checking the right executions

mp litmus test

Core © Core 1
(i1) x =1; | (i3) rl = y;
(i2) y = 1; | (i4) r2 = x;
SC Forbids: rl =1, r2 = 0

(i1) x = 1
Step 1

Does this path correspond
torl=1, r2=0?
Need to look into future!




Outcome Filtering when Executing Cycle by Cycle

=" Don’t know load values until the end of the execution!

" Must look into future to ensure we’re checking the right executions

mp litmus test

Core © Core 1
(i1) x =1; | (i3) rl = y;
(i2) y = 1; | (i4) r2 = x;

SC Forbids: rl =1, r2 = 0

(i3)r'1=y=1 —q(i4)r‘2=x=1
: Step 3 Step 4

r2 can only return 17
Don’t look at this path!




Outcome Filtering when Executing Cycle by Cycle

=" Don’t know load values until the end of the execution!

" Must look into future to ensure we’re checking the right executions

mp litmus test

Core © Core 1
(i1) x =1; | (i3) rl = y;
(i2) y = 1; | (i4) r2 = x;

SC Forbids: rl =1, r2 = 0

000
(i4) r2 = x =0

(il) x = 1 (i2) y = 1 (i3) i =y =1 (i4) r2 = x =1
Step 1 : Step 2 : Step 3 ; Step 4
o0 ‘

r2 can return 0?
Carry on to step 2.




=" Don’t know load values until the end of the execution!

" Must look into future to ensure we’re checking the right executions

mp litmus test

Core © Core 1
(i1) x = 1; | (i3) rl = y;
(i2) y = 1; | (i4) r2 = x;
(i3) r1 =y =20 SC Forbids: rl =1, r2 = 0
(i1) x = 1 (i2) y = 1
Step 1 Step 2
o0

Do these paths
correspond to r1=1,r2=07
Look into future again!
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Outcome Filtering when Executing Cycle by Cycle
=" Don’t know load values until the end of the execution!

" Must look into future to ensure we’re checking the right executions

mp litmus test

Core © Core 1

(i1) x =1; | (i3) rl = y;
(i2) y = 1; | (i4) r2 = x;

@-.‘_, = 0 SC Forbids: rl =1, r2 = 0

(iZ) y = 1 (i3) rl = y = 1 (14) r2 =x =1
Step 2 : Step 3 ; Step 4
o0

000
(i4) r2 = x = @




Outcome Filtering when Executing Cycle by Cycle

=" Don’t know load values until the end of the execution!

" Must look into future to ensure we’re checking the right executions

mp litmus test

Core O Core 1

(i1) x = 1; | (i3) rl = y;

(i2) y = 1; | (i4) r2 = x;

@-.‘_, = 0 SC Forbids: rl1 =1, r2 = 0
(il) x = 1 (i2) y =1 (i3) ri =y =1 (i4d) r2 = x =1

Step 1 Step 2 K Step 3 Y Step 4
aaa .

Looking into future => expensive liveness analysis! 9

SVA Verifiers approximate by only checking upto current step!
Makes outcome filtering impossible* to do!

* = gs far as we know



mp

Core O Core 1
(i1) x = 1; | (i3) r1 = y;
| (i2) y = 1; (i4) r2 = x;
= Don’t filter based on outcome SC Forbids. ,.£ -1,[r2-0 o

* Translate all possible outcomes

" Tag each case with appropriate load value constraints

* reflect the data constraints required for edge(s)

* Ongoing work: Precisely formalise the pspec/SVA mismatch

* How much is fundamental? How much is due to SVA verifier approximation?

Axiom "Read Values":
Every load either reads BeforeAllWrites OR reads

Property to check:
mapNode(Ld x » St x, Ld x == @) or mapNode( )5

Note: Axioms and properties abstracted for brevity
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in-order
RISC-V

pipeline
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Core 0 Corel Core 2 Core 3
IF IF IF IF
| | | |

DX DX DX DX
| | | |
WB WB WB WB
i 1 1 1
Arbiter
Memory

Arbiter
enforces that
only one core

cah access
memory at any
time
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" When two stores are sent
to memory in successive
cycles, first of two stores
is dropped by memory!

" Bug would occur even in
single-core V-scale

" Fixed bug by eliminating
intermediate wdata reg

Core O Corel Core 2 Core 3
IF IF IF IF
v v v
DX DX DX
Vv I 2 I 2
WB WB WB
I 1 !
Arbiter
Memory
Stores
wdata
1 Mem array
(%) (%) (%) (%) (%) (%) (%) (%)
(%) (%) (%) (%) (%) (%) (%) (%)

15
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" When two stores are sent  cCore 0 Core 1 Core 2 Core 3
to memory in successive |.f |_£ I_*F l_é:
cycles, first of two stores DX DX DX DX
is dropped by memory! V_\ﬁB \I_\ﬁS W'B W'B

" Bug would occur even in { { : { {
single-core V-scale Arbiter

" Fixed bug by eliminating Memory
: : Stores
intermediate wdata reg

Mem array
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

15
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Percentage of Proven Properties

Results

g generally better (90%/test) than Hybrid (81%/test)
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g generally better (90%/test) than Hybrid (81%/test)

® Hybrid ® Full_Proof
What about larger designs?
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Fe'fch Fe'fch
D?c. D?c.
Exlec. J_I Ex?c. J
M?m. L sp Melm.
WB | WB |
— —
11 | [ L [ |

Vs

L2

.

" \Verify modules, compose together hierarchically

* Great for early-stage verification!

" Improved scalability and handling of heterogeneity

18
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Pipeline Pipeline Pipeline . Pipeline ——
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" \Verify modules, compose together hierarchically

* Great for early-stage verification!

" Improved scalability and handling of heterogeneity



Core 0 Core 1 Core 2 Core 3

Memory

" \Verify modules, compose together hierarchically

* Great for early-stage verification!

" Improved scalability and handling of heterogeneity
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Memory

" \Verify modules, compose together hierarchically

* Great for early-stage verification!

" Improved scalability and handling of heterogeneity



" First automated RTL MCM verification for litmus test suites
* Engineers can check MCM properties of their RTL themselves

* Compatible with existing industry flows and tools
= Novel algorithms to translate puspec axioms to temporal SVA properties
" Discovered bug in memory implementation of RISC-V V-scale processor

= Open-source and available at https://github.com/ymanerka/rtlcheck

" Ongoing Work: Modular MCM Verification for Scalable Analysis

" Accolades:
* “Honorable Mention” from 2017 Top Picks of Comp. Arch. Conferences

19
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