Up and Down the Stack!

What we did before the break...

Microarchitecture

SC/TSO/RISC-V MCM?

The Check Suite: Tools For Verifying Memory Orderings and their Security Implications

The Check Suite: Tools For Verifying Memory Orderings and their Security Implications

For more info: check.cs.Princeton.edu

What if I want to verify RTL (Verilog)?

ISA-Level MCM

Microarchitectural Orderings


```
acyclic (po U co U rf U fr)
```

```
Axiom "PO_Fetch":
forall microop "i1", "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
    AddEdge ((i1, IF), (i2, IF)).
```

Verified with PipeProof

What if I want to verify RTL (Verilog)?

ISA-Level MCM

Microarchitectural Orderings

acyclic (po U co U rf U fr)

```
Axiom "PO_Fetch":
forall microop "i1", "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
    AddEdge ((i1, IF), (i2, IF)).
```

Verified with PipeProof

RTL implementation (Verilog)

[RTL Image: Christopher Batten]

What if I want to verify RTL (Verilog)?

ISA-Level MCM

Microarchitectural Orderings

acyclic (po U co U rf U fr)

Axiom "PO_Fetch": forall microop "i1", "i2", SameCore i1 i2 /\ ProgramOrder i1 i2 => AddEdge ((i1, IF), (i2, IF)).

Verified with PipeProof

RTL implementation (Verilog)

[RTL Image: Christopher Batten]

...but usually ignores memory consistency!

...but usually ignores memory consistency!

ISA-Formal [Reid et al. CAV 2016]

-Instr. Operational Semantics

No MCM verification!

...but usually ignores memory consistency!

ISA-Formal [Reid et al. CAV 2016]

-Instr. Operational Semantics

No MCM verification!

DOGReL [Stewart et al. DIFTS 2014]

-Memory subsystem transactions

No multicore MCM verification!

...but usually ignores memory consistency!

ISA-Formal [Reid et al. CAV 2016]

-Instr. Operational Semantics

No MCM verification!

DOGReL [Stewart et al. DIFTS 2014]

-Memory subsystem transactions

No multicore MCM verification!

Kami

[Vijayaraghavan et al. CAV 2015] [Choi et al. ICFP 2017]

-MCM correctness for all programs, but...

Needs Bluespec design and manual proofs!

...but usually ignores memory consistency!

Lack of automated memory

consistency verification at RTL!

[Vijayaraghavan et al. CAV 2015] [Choi et al. ICFP 2017]

-MCM correctness for all programs, but...

Needs Bluespec design and manual proofs!

RTLCheck: Checking RTL Consistency Orderings

High-Level Languages (HLL)

Compile

Instruction Set (ISA

Microarchitecture

Processor RTL (Verilog)

■ RTLCheck enables automated checking of Verilog RTL against µspec axioms for litmus test suites

Core 0	core 1
x = 1;	r1 = y;
y = 1;	r2 = x;

Mapping Functions

RTLCheck

assert property @(posedge clk) (...)

Test-specific Temporal RTL Properties

RTLCheck: Checking RTL Consistency Orderings

High-Level Languages (HLL)

Compile

Instruction Set (ISA

Microarchitecture

Processor RTL (Verilog)

■ RTLCheck enables automated checking of Verilog RTL against µspec axioms for litmus test suites

Test-specific Temporal RTL Properties

System Verilog Assertions (SVA)

- SVA: Industry standard for RTL verification, e.g.: ARM [Reid et al. CAV 2016]
 - Based on Linear Temporal Logic (LTL) with regular operators
- Commercial tools (e.g. JasperGold) can formally verify SVA assertions
- Translating µspec to SVA => RTL MCM verification using industry flows
- But it's not that simple!

Meaning can be Lost in Translation!

小心地滑

Meaning can be Lost in Translation!

小心地滑

(Caution: Slippery Floor)

Meaning can be Lost in Translation!

小心地滑

(Caution: Slippery Floor)

<u>Axiomatic</u> Microarch. Verification

Execution examined as
a single unit (graph)

Axiomatic Microarch. Verification

Execution examined as
a single unit (graph)

Temporal
RTL Verification
(SVA, etc)

Execution examined cycle by cycle

<u>Axiomatic</u> Microarch. Verification

Execution examined as
a single unit (graph)

µspec/SVA Mismatch!

Temporal
RTL Verification
(SVA, etc)

Execution examined cycle by cycle

- Tricky to translate µspec to SVA while maintaining µspec semantics
- SVA Verifiers (JasperGold) don't implement full SVA spec!
 - Causes further complications
- Example: Outcome Filtering
 - Filtering litmus test executions to those that have particular values for loads

- In this case, outcome filtering is **easy and efficient**
- Always know what the load values are
 - Can draw (red) edges based on these values

Core 0	Core 1
(i1) x = 1; (i2) y = 1;	(i3) r1 = y; (i4) r2 = x;

- In this case, outcome filtering is **easy and efficient**
- Always know what the load values are
 - Can draw (red) edges based on these values

inp intinus test	
Core 0	Core 1
(i1) x = 1; (i2) y = 1;	(i3) r1 = y; (i4) r2 = x;
SC Forbids: r1 = 1, r2 = 0	

- In this case, outcome filtering is **easy and efficient**
- Always know what the load values are
 - Can draw (red) edges based on these values

Core 0	Core 1
(i1) x = 1;	(i3) r1 = y; (i4) r2 = x;
(12) $y - 1$	(14) 12 - X,
SC Forbids: $r1 = 1$, $r2 = 0$	

- In this case, outcome filtering is **easy and efficient**
- Always know what the load values are
 - Can draw (red) edges based on these values

Core 0	Core 1
(i1) x = 1;	(i3) r1 = y; (i4) r2 = x;
(i2) y = 1;	(i4) r2 = x;
SC Forbids: r1 = 1, r2 = 0	

- Don't know load values until the end of the execution!
- Must look into future to ensure we're checking the right executions

inp intinus test	
Core 0	Core 1
(i1) x = 1; (i2) y = 1;	(i3) r1 = y; (i4) r2 = x;
SC Forbids: r1 = 1, r2 = 0	

- Don't know load values until the end of the execution!
- Must look into future to ensure we're checking the right executions

mp litmus test

Core 0	Core 1
(i1) x = 1; (i2) y = 1;	(i3) r1 = y; (i4) r2 = x;
SC Forbids: $r1 = 1$, $r2 = 0$	

Does this path correspond to r1=1, r2=0?

Need to look into future!

- Don't know load values until the end of the execution!
- Must look into future to ensure we're checking the right executions

Core 0	Core 1
(i1) x = 1; (i2) y = 1;	(i3) r1 = y; (i4) r2 = x;
SC Forbids: $r1 = 1$, $r2 = 0$	

Step 1 Step 2
$$(i3)$$
 r1 = y = 1 $(i4)$ r2 = x =

- Don't know load values until the end of the execution!
- Must look into future to ensure we're checking the right executions

mp litmus test

Core 0	Core 1
(i1) x = 1; (i2) y = 1;	(i3) r1 = y; (i4) r2 = x;
SC Forbids: $r1 = 1$, $r2 = 0$	

$$(i1) x = 1$$

$$Step 1$$

$$(i2) y = 1$$

$$Step 2$$

$$(i3) r1 = y = 1$$

$$Step 3$$

$$(i4) r2 = x = 1$$

$$(i4) r2 = x = 0$$

r2 can return 0? Carry on to step 2.

- Don't know load values until the end of the execution!
- Must look into future to ensure we're checking the right executions

Do these paths correspond to r1=1,r2=0?

Look into future again!

(i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

Don't know load values until the end of the execution!

correspond to r1=1,r2=0?

Look into future again!

■ Must look into future to ensure we're checking the right executions

- Don't know load values until the end of the execution!
- Must look into future to ensure we're checking the right executions

- Don't know load values until the end of the execution!
- Must look into future to ensure we're checking the right executions

Looking into future => **expensive** liveness analysis!

SVA Verifiers **approximate** by only checking upto current step!

Makes **outcome filtering impossible*** to do!

0

Solution: Load Value Constraints

Core 0 Core 1

(i1) x = 1; (i3) r1 = y;

(i2) y = 1; (i4) r2 = x;

SC Forbids: r1 = 1, r2 = 0

mp

- Don't filter based on outcome
 - Translate **all** possible outcomes
- Tag each case with appropriate load value constraints
 - reflect the data constraints required for edge(s)
- Ongoing work: Precisely formalise the µspec/SVA mismatch
 - How much is fundamental? How much is due to SVA verifier approximation?

Axiom "Read_Values":

Every load either reads **BeforeAllWrites OR** reads **FromLatestWrite**

Property to check:

 $| mapNode(Ld x \rightarrow St x, Ld x == 0) or mapNode(St x \rightarrow Ld x, Ld x == 1);$

Solution: Load Value Constraints

- Don't filter based on outcome
 - Translate **all** possible outcomes
- Tag each case with appropriate load value constraints
 - reflect the data constraints required for edge(s)
- Ongoing work: Precisely formalise the µspec/SVA mismatch
 - How much is fundamental? How much is due to SVA verifier approximation?

```
Axiom "Read_Values":
```

Every load either reads BeforeAllWrites OR reads FromLatestWrite

Property to check:

mapNode(Ld $x \rightarrow St x$, Ld x == 0) or mapNode(St $x \rightarrow Ld x$, Ld x == 1);

Solution: Load Value Constraints

- Don't filter based on outcome
 - Translate <u>all</u> possible outcomes
- Tag each case with appropriate load value constraints
 - reflect the data constraints required for edge(s)
- Ongoing work: Precisely formalise the µspec/SVA mismatch
 - How much is fundamental? How much is due to SVA verifier approximation?

Axiom "Read_Values":

Every load either reads BeforeAllWrites OR reads FromLatestWrite

Property to check:

mapNode(Ld $x \rightarrow St x$, Ld x == 0) or mapNode(St $x \rightarrow Ld x$, Ld x == 1)

Solution: Load Value Constraints

- Don't filter based on outcome
 - Translate **all** possible outcomes
- Tag each case with appropriate load value constraints
 - reflect the data constraints required for edge(s)
- Ongoing work: Precisely formalise the µspec/SVA mismatch
 - How much is fundamental? How much is due to SVA verifier approximation?

```
Axiom "Read_Values":
```

Every load either reads BeforeAllWrites OR reads FromLatestWrite

Property to check:

mapNode(Ld $x \rightarrow St x$, Ld x == 0) or mapNode(St $x \rightarrow Ld x$, Ld x == 1);

Multi-V-scale: a Multicore Case Study

Multi-V-scale: a Multicore Case Study

Multi-V-scale: a Multicore Case Study

Arbiter enforces that only one core can access memory at any time

Bug Discovered in V-scale Mem. Implementation

- When two stores are sent to memory in successive cycles, first of two stores is <u>dropped</u> by memory!
- Bug would occur even in single-core V-scale
- Fixed bug by eliminating intermediate wdata reg

Bug Discovered in V-scale Mem. Implementation

- When two stores are sent to memory in successive cycles, first of two stores is <u>dropped</u> by memory!
- Bug would occur even in single-core V-scale
- Fixed bug by eliminating intermediate wdata reg

Bug Discovered in V-scale Mem. Implementation

- When two stores are sent to memory in successive cycles, first of two stores is dropped by memory!
- Bug would occur even in single-core V-scale
- Fixed bug by eliminating intermediate wdata reg

Results: Time to Prove Properties

■ Two configurations (**Hybrid** and **Full_Proof**), avg. runtime 6.2 hrs

Results: Time to Prove Properties

■ Two configurations (**Hybrid** and **Full_Proof**), avg. runtime 6.2 hrs

Complete quickly when JasperGold detects that **litmus test outcome can never occur**

Results: Time to Prove Properties

■ Two configurations (**Hybrid** and **Full_Proof**), avg. runtime 6.2 hrs

Max runtime 11 hours (if some properties unproven)

Results: Percentage of Proven Properties

■ Full_Proof config generally better (90%/test) than Hybrid (81%/test)

Results: Percentage of Proven Properties

■ Full_Proof config generally better (90%/test) than Hybrid (81%/test)

What about larger designs?

- Verify modules, compose together hierarchically
 - Great for early-stage verification!
- Improved scalability and handling of heterogeneity

- Verify modules, compose together hierarchically
 - Great for early-stage verification!
- Improved scalability and handling of heterogeneity

- Verify modules, compose together hierarchically
 - Great for early-stage verification!
- Improved scalability and handling of heterogeneity

- Verify modules, compose together hierarchically
 - Great for early-stage verification!
- Improved scalability and handling of heterogeneity

- Verify modules, compose together hierarchically
 - Great for early-stage verification!
- Improved scalability and handling of heterogeneity

RTLCheck Takeaways

- First automated RTL MCM verification for litmus test suites
 - Engineers can check MCM properties of their RTL themselves
 - Compatible with existing industry flows and tools
- Novel algorithms to translate **µspec** axioms to temporal **SVA** properties
- Discovered bug in memory implementation of RISC-V V-scale processor
- Open-source and available at https://github.com/ymanerka/rtlcheck
- Ongoing Work: Modular MCM Verification for Scalable Analysis
- Accolades:
 - "Honorable Mention" from 2017 Top Picks of Comp. Arch. Conferences

