Up and Down the Stack!

What we did before the break...

Microarchitecture

 Fetch Fetch |
— }
Dec. | Lds. Dec.

) ¢ || SB SB ||, t y

_ Exec. | ~ Exec. |

SR S ;

. Mem. | L1] [L1 } Mem
— i
WB WB
— [L2] |

Coherence Protocol (SWMR, DVI, etc.)

?

SC/TSO/RISC-V MCM?

Architecture (ISA)

Microarchitecture

The Check Suite: Tools For Verifying Memory
Orderings and their Security Implications

High-Level Languages (HLL)

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

CheckMate _
COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

[IEEE Micro
Top Picks] Architecture (ISA)
PibeProof PipeCheck [Micro ‘14] [IEEE MICRO Top Picks]
p' (Microarchitecture CCICheck [Micro “15] [Nominated for Best Paper Award]
[Micro ‘18]
[Best Paper Nominee. , RTLCheck [Micro ‘17] [IEEE MICRO Top Picks Honorable Mention]
IEEE Micro Top Picks RTL (e.g. Verilog)

Honorable Mention]

For more info: check.cs.Princeton.edu

The Check Suite: Tools For Verifying Memory
Orderings and their Security Implications

Microarchitecture

RTLCheck [Micro ‘17] [IEEE MICRO Top Picks Honorable Mention]

¢

MCM Verification of
Verilog RTL

RTL (e.g. Verilog)

For more info: check.cs.Princeton.edu

What if | want to verify RTL (Verilog)?

ISA-Level MCM
fr
(\ .
acyclic oUcoUTrfU fr
1 po 3 rf isﬁ’& y (p)
Microarchitectural Orderings I I Verlfled with
(i2) (i2) (i3 (14 PipeProof

IF Axiom "PO Fetch":

forall microop "il", "i2",

SameCore il i2 /\ ProgramOrder il i2 =>
AddEdge ((il1, IF), (i2, IF)).

EX

wB

What if | want to verify RTL (Verilog)?

ISA-Level MCM
fr
(\ .
acyclic oUcoUrfU fr
1 po izi’isﬁ’M y (p)
Microarchitectural Orderings I I Verlfled with
(i2) (i2) (i3 (14 PipeProof

IF Axiom "PO Fetch":

forall microop "il", "i2",

SameCore il i2 /\ ProgramOrder il i2 =>
AddEdge ((il1, IF), (i2, IF)).

EX

wB

° . H n-.
RTL implementation (Verilog) I I

?

O

[RTL Image: Christopher Batten]

What if | want to verify RTL (Verilog)?

ISA-Level MCM
fr
(\ .
acyclic oUcoUTrfU fr
. po izi’igﬂu y (p)
Microarchitectural Orderings I I Verlfled with
(i2) (i2) (i3) (14 PipeProof

Axiom "PO Fetch":

forall microop "il", "i2",

SameCore il i2 /\ ProgramOrder il i2 =>
AddEdge ((il1, IF), (i2, IF)).

rx.l I
?

O

[RTL Image: Christopher Batten]

® ..but usually ignores memory consistency!

® ..but usually ignores memory consistency!

/ISA-FormaI [Reid et al. CAV 2016?

-Instr. Operational Semantics

\{ No MCM verification! L

® ..but usually ignores memory consistency!

/ISA-FormaI [Reid et al. CAV 2016? /DOGReL [Stewart et al. DIFTS 2014] A
-Instr. Operational Semantics -Memory subsystem transactions
i No MCM verification! L LNO multicore MCM verification!L

® ..but usually ignores memory consistency!

/ISA-FormaI [Reid et al. CAV 2016?

-Instr. Operational Semantics

\{ No MCM verification! L

Kami

KDOGReL [Stewart et al. DIFTS 2014] A
-Memory subsystem transactions
LNO multicore MICM verification!L

[Vijayaraghavan et al. CAV 2015] [Choi et al. ICFP 2017]
-MCM correctness for all programs, but...

[Needs Bluespec design and manual proofs! J

Lack of automated memory

consistency verification at RTL!

RTLCheck: Checking RTL Consistency Orderings
" RTLCheck enables automated checking of Verilog RTL

against uspec axioms for litmus test suites

pspec axioms Litmus Test
Axiom "PO_FetCh": Core © Core 1 :
forall microop "i1", "i2", Mapping
SameCore il i2 /\ ProgramOrder i1l i2 => || X = 15 |rl =y; Functions
AddEdge ((il, IF), (i2, IF)). y =1; |r2 = Xx;

Microarchitecture

Processor RTL (Verilog)

assert property @(posedge clk) (...)

Test-specific Temporal RTL Properties

[Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael Pellauer. RTLCheck: Verifying the Memory Consistency of RTL Designs.
The 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), October 2017.]

RTLCheck: Checking RTL Consistency Orderings
" RTLCheck enables automated checking of Verilog RTL

against uspec axioms for litmus test suites

pspec axioms Litmus Test
Axiom "PO_FetCh": Core © Core 1 :
forall microop "i1", "i2", Mapping
SameCore il i2 /\ ProgramOrder i1l i2 => || X = 15 |rl =y; Functions
AddEdge ((il, IF), (i2, IF)). y =1; |r2 = Xx;

Microarchitecture

Processor RTL (Verilog)

assert property @(posedge clk) (...)

Test-specitic Temporal RTL Properties

[Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael Pellauer. RTLCheck: Verifying the Memory Consistency of RTL Designs.
The 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), October 2017.]

SystemVerilog Assertions (SVA)

" SVA: Industry standard for RTL verification, e.g.: ARM [Reid et al. CAV 2016]

e Based on Linear Temporal Logic (LTL) with regular operators
* Commercial tools (e.g. JasperGold) can formally verify SVA assertions
" Translating pspec to SVA => RTL MCM verification using industry flows
" But it’s not that simple!

SVA Assertions
assert property @(posedge clk) (...)

RTL Impl.

Cadence JasperGold

Assertion Proven?
Counterexample found? 7

IND DR

(Caution: Slippery Floor)

Meaning can be Lost in Translation!

DB
(Caution: Slippery Floor)

[Image: Barbara Younger]
[Inspiration: Tae Jun Ham]

Axiomatic
Microarch.
Verification

Core 0 Core 1

(i1) (i2 (
St [x], 1 St[y], 1 Ld[y]=1 Ld[x]=

O S a1
?—»(? DecodeExecute)—)9

~

—_
i
(%)

~—

Execution examined as
a single unit (graph)

Axiomatic

Microarch. 9*_*§>
TS

Verification

Execution examined as

DecodeExecute (?_.g a single unit (graph)
N |

Fetch

2 3 4 5 6 7
Temporal Execution examined

RTL Verification TNOES amm £ AT G G G- cvcle by cycle
(SVA, etc) Corel1].0%

Core[1].WB D D
core[1].pata X XK |

Core 0 Core 1

(i1) (i2 (i3) (i4)
St [x], 1 St [yl 1 Ld[y]l]=1 Ld[x]=0

~—

Axiomatic

Fetch
Microarch. 9
Ve r i'Fi C at ion ?_><? DecodeExecute

uspec/SVA Mismatch! --------
.

.
2 3 4 5 6 7
ad LU
coretor.on KN
SAOE - 5 £ G- - — : :
Temporal o Execution examined

RTL Verification TNOES amm £ AT G G G- cvcle by cycle
(SVA, etc) Corel1].0%

Core[1].WB D D
core[1].pata X XK |

? Execution examined as
? a single unit (graph)

Il

= Tricky to translate pspec to SVA while maintaining puspec semantics

= SVA Verifiers (JasperGold) don’t implement full SVA spec!

e Causes further complications

=" Example: Outcome Filtering

* Filtering litmus test executions to those that have particular values for loads

" n this case, outcome filtering is easy and efficient

= Always know what the load values are

* Can draw (red) edges based on these values

(i1) (i2) (i3) (i4)

IE mp litmus test
Core © Core 1
(i1) x =1; | (i3) rl = y;
EX (i2) y = 1; | (i4) r2 = x;

WB

" n this case, outcome filtering is easy and efficient

= Always know what the load values are

* Can draw (red) edges based on these values

(i1) (i2) (i3) (i4)

IE mp litmus test
Core © Core 1
(i1) x =1; | (i3) rl = y;
EX (i2) y = 1; | (i4) r2 = x;
SC Forbids: rl1 =1, r2 = 0

WB

" n this case, outcome filtering is easy and efficient

= Always know what the load values are

* Can draw (red) edges based on these values

(i1) (i2) (i3) (i4)

IE mp litmus test
Core O Core 1
(i1) x = 1; | (i3) rl1 = v;
EX (i2) y = 1; | (i4) r2 = x;
SC Forbids: rl1 =1, r2 = 0

WB

" n this case, outcome filtering is easy and efficient

= Always know what the load values are

* Can draw (red) edges based on these values

(i1)

(i2)

(i3)

(i4)

mp litmus test

IF
Core © Core 1
(il1) x =1; | (i3) rl = y;
EX (i2) y = 1; | (18) r2 = x;
S ———————————
SC Forbids: rl1 =1, r2 = 0

WB

=" Don’t know load values until the end of the execution!

" Must look into future to ensure we’re checking the right executions

mp litmus test

Core © Core 1
(i1) x = 1; | (i3) rl = y;
(i2) y = 1; | (i4) r2 = x;

SC Forbids: rl =1, r2 = 0

=" Don’t know load values until the end of the execution!

" Must look into future to ensure we’re checking the right executions

mp litmus test

Core © Core 1
(i1) x =1; | (i3) rl = y;
(i2) y = 1; | (i4) r2 = x;
SC Forbids: rl =1, r2 = 0

(i1) x = 1
Step 1

Does this path correspond
torl=1, r2=0?
Need to look into future!

Outcome Filtering when Executing Cycle by Cycle

=" Don’t know load values until the end of the execution!

" Must look into future to ensure we’re checking the right executions

mp litmus test

Core © Core 1
(i1) x =1; | (i3) rl = y;
(i2) y = 1; | (i4) r2 = x;

SC Forbids: rl =1, r2 = 0

(i3)r'1=y=1 —q(i4)r‘2=x=1
: Step 3 Step 4

r2 can only return 17
Don’t look at this path!

Outcome Filtering when Executing Cycle by Cycle

=" Don’t know load values until the end of the execution!

" Must look into future to ensure we’re checking the right executions

mp litmus test

Core © Core 1
(i1) x =1; | (i3) rl = y;
(i2) y = 1; | (i4) r2 = x;

SC Forbids: rl =1, r2 = 0

000
(i4) r2 = x =0

(il) x = 1 (i2) y = 1 (i3) i =y =1 (i4) r2 = x =1
Step 1 : Step 2 : Step 3 ; Step 4
o0 ‘

r2 can return 0?
Carry on to step 2.

=" Don’t know load values until the end of the execution!

" Must look into future to ensure we’re checking the right executions

mp litmus test

Core © Core 1
(i1) x = 1; | (i3) rl = y;
(i2) y = 1; | (i4) r2 = x;
(i3) r1 =y =20 SC Forbids: rl =1, r2 = 0
(i1) x = 1 (i2) y = 1
Step 1 Step 2
o0

Do these paths
correspond to r1=1,r2=07
Look into future again!

=" Don’t know load values until the end of the execution!

" Must look into future to ensure we’re checking the right executions

mp litmus test

Core O Core 1
(i1) x =1; | (i3) rl = y;
(i2) y = 1; | (i4) r2 = x;
@ "= O SC Forbids: rl =1, r2 = 0
(i1) x = 1 (i2) y = 1
Step 1 Step 2
o0

Do these paths
correspond to r1=1,r2=07
Look into future again!

Outcome Filtering when Executing Cycle by Cycle
=" Don’t know load values until the end of the execution!

" Must look into future to ensure we’re checking the right executions

mp litmus test

Core © Core 1

(i1) x =1; | (i3) rl = y;
(i2) y = 1; | (i4) r2 = x;

@-.‘_, = 0 SC Forbids: rl =1, r2 = 0

(iZ) y = 1 (i3) rl = y = 1 (14) r2 =x =1
Step 2 : Step 3 ; Step 4
o0

000
(i4) r2 = x = @

Outcome Filtering when Executing Cycle by Cycle

=" Don’t know load values until the end of the execution!

" Must look into future to ensure we’re checking the right executions

mp litmus test

Core O Core 1

(i1) x = 1; | (i3) rl = y;

(i2) y = 1; | (i4) r2 = x;

@-.‘_, = 0 SC Forbids: rl1 =1, r2 = 0
(il) x = 1 (i2) y =1 (i3) ri =y =1 (i4d) r2 = x =1

Step 1 Step 2 K Step 3 Y Step 4
aaa .

Looking into future => expensive liveness analysis! 9

SVA Verifiers approximate by only checking upto current step!
Makes outcome filtering impossible* to do!

* = gs far as we know

mp

Core O Core 1
(i1) x = 1; | (i3) r1 = y;
| (i2) y = 1; (i4) r2 = x;
= Don’t filter based on outcome SC Forbids. ,.£ -1,[r2-0 o

* Translate all possible outcomes

" Tag each case with appropriate load value constraints

* reflect the data constraints required for edge(s)

* Ongoing work: Precisely formalise the pspec/SVA mismatch

* How much is fundamental? How much is due to SVA verifier approximation?

Axiom "Read Values":
Every load either reads BeforeAllWrites OR reads

Property to check:
mapNode(Ld x » St x, Ld x == @) or mapNode()5

Note: Axioms and properties abstracted for brevity

mp

Core O Core 1
(i1) x = 1; | (i3) r1 = y;
| (i2) y = 1; (i4) r2 = x;
= Don’t filter based on outcome SC Forbids. ,.£ -1,[r2-0 o

* Translate all possible outcomes

" Tag each case with appropriate load value constraints

* reflect the data constraints required for edge(s)

* Ongoing work: Precisely formalise the pspec/SVA mismatch

* How much is fundamental? How much is due to SVA verifier approximation?

Axiom "Read Values":
Every load either reads|BeforeAllWrites |OR reads

Property to check:
mapNode{Ld X > St x, Ld x == 0)]or mapNode ()5

Note: Axioms and properties abstracted for brevity

mp

Core O Core 1
(i1) x = 1; | (i3) r1 = y;
| (i2) y = 1; (i4) r2 = x;
= Don’t filter based on outcome SC Forbids. ,.£ -1,[r2-0 o

* Translate all possible outcomes

" Tag each case with appropriate load value constraints

* reflect the data constraints required for edge(s)

* Ongoing work: Precisely formalise the pspec/SVA mismatch

* How much is fundamental? How much is due to SVA verifier approximation?

Axiom "Read Values":
Every load either reads BeforeAllWrites OR reads[l

Property to check:
mapNode(Ld x » St x, Ld x == @) or mapNode{ j;

Note: Axioms and properties abstracted for brevity

mp

Core O Core 1
(i1) x = 1; | (i3) r1 = y;
| (i2) y = 1; (i4) r2 = x;
= Don’t filter based on outcome SC Forbids. ,.£ -1,[r2-0 o

* Translate all possible outcomes

" Tag each case with appropriate load value constraints

* reflect the data constraints required for edge(s)

* Ongoing work: Precisely formalise the pspec/SVA mismatch

* How much is fundamental? How much is due to SVA verifier approximation?

Axiom "Read Values":
Every load either reads BeforeAllwritesreads

Property to check:
mapNode(Ld x » St x, Ld x == 0)|or|mapNode()5

Note: Axioms and properties abstracted for brevity

Core O

IF

DX

WB

Memory

14

3-stage
in-order
RISC-V

pipeline

_Core0

IF

DX

WB

Memory

14

Core 0 Corel Core 2 Core 3
IF IF IF IF
| | | |

DX DX DX DX
| | | |
WB WB WB WB
i 1 1 1
Arbiter
Memory

Arbiter
enforces that
only one core

cah access
memory at any
time

14

" When two stores are sent
to memory in successive
cycles, first of two stores
is dropped by memory!

" Bug would occur even in
single-core V-scale

" Fixed bug by eliminating
intermediate wdata reg

Core O Corel Core 2 Core 3
IF IF IF IF
v v v
DX DX DX
Vv I 2 I 2
WB WB WB
I 1 !
Arbiter
Memory
Stores
wdata
1 Mem array
(%) (%) (%) (%) (%) (%) (%) (%)
(%) (%) (%) (%) (%) (%) (%) (%)

15

" When two stores are sent
to memory in successive
cycles, first of two stores
is dropped by memory!

" Bug would occur even in
single-core V-scale

" Fixed bug by eliminating
intermediate wdata reg

Core O Corel Core 2 Core 3
IF IF IF IF
v v v
DX DX DX
Vv I 2 I 2
WB WB WB
I 1 !
Arbiter
Memory
Stores
wd.ata
l Mem array
(%) (%) (%) (%) (%) (%) (%) (%)
(%) (%) (%) (%) (%) (%) (%) (%)

15

" When two stores are sent cCore 0 Core 1 Core 2 Core 3
to memory in successive |.f |_£ I_*F l_é:
cycles, first of two stores DX DX DX DX
is dropped by memory! V_\ﬁB \I_\ﬁS W'B W'B

" Bug would occur even in { { : { {
single-core V-scale Arbiter

" Fixed bug by eliminating Memory
: : Stores
intermediate wdata reg

Mem array
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

15

ueanl
MLI-02
cpwe
Tu
900!
00!
vIoH
SO0
oo
9109jes
v0o3jes
9¢03jes
TTOH
000!
TOO}
6T094es
qu
¢ToM
LT03jes
100 Mmpod
vzdmi
LU

mul
TZ0d4es
€00
STOM
TTO3jes
0€odjes
€TOH
u

oMl
L20djes
6c093jes
60093jes
qezdmi
v103jes
c00djes
¢T0d9jes
piajeas+dw
€0094es
0004mpod
8109jes
qs

2AM
T003jes
dw-02
su

pu
8009jes
0003jes
Iss
0T03jes
codjes
dw
L00djes
qi
90034es

16

€S

H Full Proof

® Hybrid

to Prove Propert

ime

T

" Two configurations (Hybrid and Full Proof), avg. runtime 6.2 hrs

12

o 0 O < N o
i

(sanoy) swiy

7
=
-
7.
&
A

ueaN
MLI-02
cpwe
Tu
90044
004
1AV
<[00
<0044
9103jes
v00ojes
9c0djes
TT044
00044
T00W
6T0>jes
qu
4]} %
LTOd3jes
100 Mmpod
vzdmi
LU

MLl
Tc03jes
€004
STOoW
TTO3jes
0€0ajes
€TI0
U

oMJ
L203jes
6¢C03jes
600°jes
qezdmi
v1039jes
¢00?3jes
¢T03jes

16

H Full Proof

® Hybrid

E €00°jes

' 0004mpod

! 8T09jes

i as

I 2UMm

| T00®jes

1 dw-0d

I qu

i bu

| 8009jes
000?jes
Iss
0TO3jes
¢codjes
dw
£00?3jes
qi
900°3jes

s
N

that litmus test outcome can never occur

12

o 0 O <
i

" Two configurations (Hybrid and Full Proof), avg. runtime 6.2 hrs

)
QL
o

-

)

O

O

-
al

)

>

O

p -
al

@)
o

D
=
_I

)
=

]

)

D
ad

Complete quickly when JasperGold detects

(sanoy) swiy

—

Sh————
———

———
o

12

o 0 O < N o
i

" Two configurations (Hybrid and Full Proof), avg. runtime 6.2 hrs

)
QL
o

-

)

O

O

-
al

)

>

O

p -
al

@)
o

D
=
_I

0
=

]

)

D
ad

(sanoy) swiy

ueaN
MLI-02
cpwe
Tu
90044
004
1AV
<[00
<0044
9103jes
v00ojes
9c0djes
TT044
00044
T00W
6T0>jes
qu
4]} %
LT03jes
100 Mmpod
vzdmi
LU

MLl
Tc03jes
€004
STOoW
TTO3jes
0€0ajes
€TI0
U

oMJ
L203jes
6¢C03jes
600°jes

= qgzdmi

v1094es
c003jes
c1o03jes

= plajers+dw
= €003jes

' 0004mpod
i 8TO03jes

1 gs

I 2Im

i T003jes

1 dw-0d

i qu

| pu

' 8003jes

000°2jes
Iss
0TO032jes
¢coojes
dw
L003jes
qi
900°jes

B Full_Proof

® Hybrid

Max runtime 11 hours (if

some properties unproven)

16

Percentage of Proven Properties

Results

g generally better (90%/test) than Hybrid (81%/test)

=
-
@)
O
Y-
O
O
-
al
—
1
-]
LL
|

© O O O O O O
00 N O N < N N

sa1uadoad uanoud %

uean
6C03jes
qezdmi
0004mpod
qs

dw-03

ISS

0TO03jes
¢codjes
dw

€10
pisjeis+dw
Epwe
00y
6009jes
IMJI

8103jes
2iM

su

qu
IOy
8003jes
T004mpod
Lc0djes
9c03jes
TOoOW
STOW
vzdmi
T003jes
v109jes
€003jes
€001/
¢109jes
<004y
MUl

Zu
¢003jes
S0
MLII-0D
U

r4 0]
Tu
90044
TTO4
Tc03jes
003jes
6T03jes
LT03jes
00014
0€03jes
9103jes
TT09jes
pu
0003jes
£003jes
qi
9009jes

® Hybrid ® Full_Proof

17

uean
6C03jes
qezdmi
0004mpod
qs

dw-0o

ISS

0TO03jes
¢codjes
dw

€10
pisjeis+dw
Epwe
00y
6009jes
IMJI

8103jes
2iM

su

qu
IOy
8003jes
T004mpod
Lc0djes
9c03jes
TOoOW
STOW
vzdmi
T003jes
v109jes
€003jes
€001/
¢109jes
<004y
MUl

Zu
¢003jes
S0
MLII-0D
U

r4 0]
Tu
90044
TTO4
Tc03jes
003jes
6T03jes
LT03jes
00014
0€03jes
9103jes
TT09jes
pu
0003jes

17

g generally better (90%/test) than Hybrid (81%/test)

® Hybrid ® Full_Proof
What about larger designs?

9009jes

© O O O O O 0O O © o o
m987654321

)
Q
o

-

D

@k

@)

| V-
an

-

)

>

O

 —
al
(-

@)

D

@)

©
o

-

)

O

-

)
al

)
=

>

)

D
ad

" Full Proof confi

sa1uadoad uanoud %

Fe'fch Fe'fch
D?c. D?c.
Exlec. J_I Ex?c. J
M?m. L sp Melm.
WB | WB |
— —
11 | [L [|

Vs

L2

.

" \Verify modules, compose together hierarchically

* Great for early-stage verification!

" Improved scalability and handling of heterogeneity

18

_

Fe?ch Fe'fch Fe}ch
D(—;_-c. D?c. D?c.
Ex:ec. J Ex$c. J Exs:c.
M?m. igB M?m. -‘SB M?m. SB
WB WB WB
4
L2

" \Verify modules, compose together hierarchically

* Great for early-stage verification!

" Improved scalability and handling of heterogeneity

18

Pipeline Pipeline Pipeline . Pipeline ——
‘ SB ‘ SB SB | SB

L1 L1 L1 L1

L2

" \Verify modules, compose together hierarchically

* Great for early-stage verification!

" Improved scalability and handling of heterogeneity

Core 0 Core 1 Core 2 Core 3

Memory

" \Verify modules, compose together hierarchically

* Great for early-stage verification!

" Improved scalability and handling of heterogeneity

Core 0 Core 1 Core 2

Memory

" \Verify modules, compose together hierarchically

* Great for early-stage verification!

" Improved scalability and handling of heterogeneity

" First automated RTL MCM verification for litmus test suites
* Engineers can check MCM properties of their RTL themselves

* Compatible with existing industry flows and tools
= Novel algorithms to translate puspec axioms to temporal SVA properties
" Discovered bug in memory implementation of RISC-V V-scale processor

= Open-source and available at https://github.com/ymanerka/rtlcheck

" Ongoing Work: Modular MCM Verification for Scalable Analysis

" Accolades:
* “Honorable Mention” from 2017 Top Picks of Comp. Arch. Conferences

19

https://github.com/ymanerka/rtlcheck

